K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

x^2019+y^2019+z^2019=1

24 tháng 3 2018

Sửa đề phải là \(x,y,z\ge0\)

Ta có: \(\hept{\begin{cases}x,y,z\ge0\\x+y+z=1\end{cases}}\)

\(\Rightarrow0\le x,y,z\le1\)

\(\Rightarrow0\le x^2,y^2,z^2\le1\)

Theo đề bài ta có

\(x^3+y^3+z^3=x+y+z\)

\(\Leftrightarrow x\left(1-x^2\right)+y\left(1-y^2\right)+z\left(1-z^2\right)=0\)

Để dấu = xảy ra và kết hợp với điều kiện đề bài thì ta suy ra được trong 3 số x, y, z có 2 số = 0 và 1 số = 1

\(\Rightarrow S=1\)

6 tháng 9 2020

Đặt \(x+6=a;y-7=b;z-9=c\)

\(\Rightarrow\hept{\begin{cases}a+b+c=0\\a^3+b^3+c^3=0\end{cases}}\)

Bạn hiểu chưa :))

6 tháng 9 2020

Đặt x+6=a, y-7=b, z-9=c

Vì x+y+z=10 nên a+b+c=0

Xét \(a^3+b^3+c^3=0\Leftrightarrow a^3+b^3+c^3-3abc=-3abc\)(1)

Ta có đẳng thức (bạn nên học đẳng thức này nhé vì nó cực kì thông dụng trong toán nâng cao):

\(a^3+b^3+c^3-3abc=\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}\)(2)

Vì a+b+c=0 nên từ (1), (2) suy ra \(\hept{\begin{cases}-3abc=0\\a+b+c=0\end{cases}\Rightarrow a=b=c=0}\)

Vậy M = a2019+b2019+c2019=0

20 tháng 3 2021

Ta có: \(x^3+y^3+z^3=3xyz\)

   \(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)

   \(\Leftrightarrow\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3xy\left(x+y\right)-3xyz=0\)

   \(\Leftrightarrow\left(x+y+z\right).\left[\left(x+y+z\right)^2-3.\left(x+y\right).z\right]-3xy\left(x+y+z\right)=0\)

   \(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2+2xy+2yz+2zx-3xz-3yz-3xy\right)=0\)

   \(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2-xz-yz-xy\right)=0\)

\(x+y+z=0\)\(\Rightarrow\)\(C=\frac{x^{2019}+y^{2019}+z^{2019}}{0}\)( Loại )

\(x^2+y^2+z^2-xz-yz-xy=0\)

\(\Rightarrow2x^2+2y^2+2z^2-2xz-2yz-2xy=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\)\(x=y=z\)

\(\Rightarrow\)\(C=\frac{x^{2019}+x^{2019}+x^{2019}}{\left(x+x+x\right)^{2019}}=\frac{3.x^{2019}}{3^{2019}.x^{2019}}=\frac{1}{3^{2018}}\)

Vậy.......

20 tháng 3 2021

Từ x3 + y3 + z3 = 3xyz

=> ( x + y + z )( x2 + y2 + z2 - xy - yz - xz ) = 0 ( phân tích như bạn kia )

Vì x + y + z ≠ 0

=> x2 + y2 + z2 - xy - yz - xz = 0

<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz = 0

<=> ( x - y )2 + ( y - z )2 + ( x - z )2 = 0

VT ≥ 0 ∀ x,y,z. Đẳng thức xảy ra <=> x=y=z

Khi đó \(C=\frac{x^{2019}+y^{2019}+z^{2019}}{\left(x+y+z\right)^{2019}}=\frac{3x^{2019}}{\left(3x\right)^{2019}}=\frac{3x^{2019}}{3^{2019}\cdot x^{2019}}=\frac{1}{3^{2018}}\)

30 tháng 1 2019

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\Rightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Rightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)\(\Rightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\left(x+y\right)\left(\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)\(\Rightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)\(\Rightarrow\)\(x=-y\) hoặc \(y=-z\) hoặc \(z=-x\)

\(\Rightarrow A=0\)

30 tháng 1 2019

Sai đề không

15 tháng 3 2015

ta có (x+y+z)3 = (x+y)3 + [3(x+y)2z + 3(x+y).z2 ]+ z3 = (x3 + 3x2y + 3xy2 + y3 )+ 3 (x+y).z.(x+y+z) + z3

x3 + y3 + z3 + 3xy (x+y) + 3z(x+y) (vì x+y + z = 1)

= 1 + 3(x+y).(xy + z) = 1+ 3(x+y)(xy+z) = 1 

=> x+y = 0 hoặc xy +z = 0

Nếu x+ y = 0 => x=-y và z = 1 => S = x2013 + (-x)2015 + 12017 + 2019 = x2013 - x2015 +2020 (có thể đề là y2013

Nếu xy + z = 0 => z = -xy => x + y -xy - 1 = 0 => x(1-y) -(1-y) = 0 => (x-1)(1-y) = 0 => x = 1 hoặc y = 1

x = 1 => z = -y làm tương tự như trên

* đề nên sửa số mũ của x, y, z đều bằng nhau và bằng số lẻ

22 tháng 11 2016

Bạn Trần thị Loan trả lời sai mất rồi

1 tháng 8 2018

TÔI CHƯA GIẢI ĐƯỢC