Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{2019}{x+xy+1}+\frac{2019}{y+yz+1}+\frac{2019}{z+zx+1}=2019\left(\frac{1}{x+xy+1}+\frac{1}{y+yz+1}+\frac{1}{z+zx+1}\right)\)
\(=2019\left(\frac{z}{xz+xyz+z}+\frac{xz}{xyz+xyz^2+xz}+\frac{1}{z+zx+1}\right)\)
\(=2019\left(\frac{z}{xz+z+1}+\frac{xz}{1+z+xz}+\frac{1}{z+zx+1}\right)\)(vì xyz = 1)
\(=2019\left(\frac{z+xz+1}{xz+z+1}\right)=2019\)
Vậy A = 2019
Theo đề bài để tồn tại phân số: \(\frac{1}{x+y+z}\) ta có: \(x+y+z\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)
Thay vào đề bài ta có: \(\frac{\frac{1}{2}-x+1}{x}=\frac{\frac{1}{2}-y+2}{y}=\frac{\frac{1}{2}-z-3}{z}=2\)
Dễ dàng tìm được x;y;z rồi thay vào b thức
Ta có: \(\frac{x+y-3}{z}=\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{1}{x+y+z}\)
\(\Rightarrow\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=x+y+z\)
TH1: \(x+y+z=0\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=\frac{x+y+z}{x+y-3+y+z+1+z+x+2}\)
\(=\frac{x+y+z}{x+y+y+z+z+x}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow x+y=\frac{1}{2}-z\)
\(y+z=\frac{1}{2}-x\)
\(z+x=\frac{1}{2}-y\)
Thay \(x+y-3=\frac{1}{2}-z-3\)
\(\Rightarrow\frac{z}{\frac{1}{2}-z+3}=\frac{1}{2}\)
\(\Rightarrow2z=\frac{1}{2}-z-3\)
\(\Rightarrow2z+z=\frac{1}{2}-3\)
\(\Rightarrow3z=-\frac{5}{2}\Rightarrow z=-\frac{5}{6}\)
Thay \(y+z+1=\frac{1}{2}-x+1\)
\(\Rightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\)
\(\Rightarrow2x=\frac{1}{2}-x+1\)
\(\Rightarrow2x+x=\frac{1}{2}+1\)
\(\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)
Thay \(z+x+2=\frac{1}{2}-y+2\)
\(\Rightarrow\frac{y}{\frac{1}{2}-y+2}=\frac{1}{2}\)
\(\Rightarrow2y=\frac{1}{2}-y+2\)
\(\Rightarrow2y+y=\frac{1}{2}+2\)
\(\Rightarrow3y=\frac{5}{2}\Rightarrow y=\frac{5}{6}\)
Ta có: \(A=\left(x+y+z-\frac{3}{2}\right)^{2019}\)
\(=\left(\frac{1}{2}+\frac{5}{6}+-\frac{5}{6}-\frac{3}{2}\right)^{2019}\)
\(=\left[\left(\frac{1}{2}-\frac{3}{2}\right)+\left(-\frac{5}{6}+\frac{5}{6}\right)\right]^{2019}\)
\(=\left(-1\right)^{2019}=-1\)
TH2: x + y + z = 0
\(\Rightarrow\frac{z}{x+y-3}=\frac{x}{y+z+1}=\frac{y}{z+x+2}=0\)
\(\Rightarrow x=y=z=0\)
\(A=\left(x+y+z-\frac{3}{2}\right)^{2019}\)
\(=\left(0-\frac{3}{2}\right)^{2019}=\left(-\frac{3}{2}\right)^{2019}\)
Ah! Mk nhầm chút. TH1 là khác 0 nhé!!!!!!
TH1:x+y+z=0 \(\Rightarrow x=y=z=0\)
TH2:x+y+z\(\ne0\)
Áp dụng t/c .............
Được x+y+z=1/2
Biến đổi ta được \(x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)