cho hình bình hành ABCD . Ở phía ngoài của hình bình hành vẽ các hình vuông ADEF va ABGH . Gọi O là giao các đường chéo AE và DF . Chứng minh OH=OC và OH vuông góc với OC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tứ giác ADEF là hình vuông =) 2 đường chéo AE và DF đồng thời là đường phân giác
=) \(\widehat{O\text{D}A}\)=\(\widehat{\text{OA}F}\)( cùng = 450 )
Ta có : \(\widehat{FAD}\)+\(\widehat{DAB}\)+\(\widehat{HAB}\)+\(\widehat{FAH}\)= 3600
900 + \(\widehat{DAB}\)+900 +\(\widehat{FAH}\)= 3600
1800 +\(\widehat{DAB}\)+\(\widehat{FAH}\) = 3600
\(\widehat{DAB}\)+\(\widehat{FAH}\) = 1800
Mà \(\widehat{DAB}\)+\(\widehat{A\text{D}C}\)= 1800 ( 2 góc ở vị trí trong cùng phía )
=) \(\widehat{FAH}\)= \(\widehat{A\text{D}C}\) ( cùng cộng với \(\widehat{DAB}\)=1800 )
=) \(\widehat{FAH}\)+ \(\widehat{FAO}\)= \(\widehat{A\text{D}C}\)+ \(\widehat{O\text{D}A}\)
=) \(\widehat{OAH}\)= \(\widehat{O\text{D}C}\)
b) Do tứ giác ABGH là hình vuông =) AH=AB
Mà AB = CD
=) AH = CD
Xét tam giác ODC và tam giác OAH có ;
OD = OA
\(\widehat{O\text{D}C}\)= \(\widehat{OAH}\) ( chứng minh phần a)
CD = AH (chứng minh trên )
=) Tam giác ODC = Tam giác OAH (c-g-c)
=) OC = OH ( 2 cạch tương ứng )
1: Xét tứ giác AECF có
O là trung điểm của AC
O là trung điểm của FE
Do đó: AECF là hình bình hành
1/
Xét tam giác AOD và tam giác BOC có
^CBD=^ADB; ^ACB=^CAD
=> tam giác AOD đồng dạng với tam giác BOC => OA/OC=OB/OD => OA.OD=OC.OB (dpcm)
2/
Ta có ^ABC=^ADC (2 góc đối hình bình hành)
Xét hai tam giác vuông BCE và tam giác vuông DCG có
^ECB=^GDC (cùng bù với ^ABC=^ADC)
=> tam giác BCE đồng dạng với tam giác DCG