Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ làm phần a thôi nhé bạn !
Bài giải:
Xét tam giác EBC và tam giác FAE, vì ABCD là hình bình hành và hai tam giác ABE, ADF đều nên ta có:
* EB = EA
* BC = AD = AF
* ^EBC = 60o + ^ABC = 60o + (180o - ^BAD) = 360o - ^BAD - (^FAD + ^BAE) = ^EAF
Do đó 2 tam giác trên bằng nhau. Từ đó suy ra EC = EF (2 cạnh tương ứng).
Hoàn toàn tương tự với tam giác EBC và CDF, ta cũng suy ra được CF = FE.
Vậy EC = EF = CF hay tam giác EFC đều. (đpcm)
Hạ K vuông góc DC tại N =>EM//KN﴾1﴿ Vì F dx K qua BC =>FC=CK =>2 góc FCB=FCK Mà A=C=60 độ =>góc KCN=60 Xét 2 tam giác vuông EMD và KNC có: ED=CK﴾cùng Bằng FC﴿ D= góc KCL => tam giác EMD=KNC ﴾cạnh huyền góc nhọn ﴿ =>EM=KN﴾2﴿ Từ ﴾1﴿ và ﴾2﴿ =>EKNM là HBH =>EK//DC =>EK//AB
hạ K vuông góc DC tại N => EM//KN(1)
vì F dx K qua BC = > FC = CK
=> 2 góc FCB = FCK
mà A=C + 60 độ => góc KCN = 60
xét 2 tam giác vuông EMD và KNC có :ED = CK ( cùng bằng FC ) D = góc KCL
=> tam giác EMD = KNC ( cạnh huyền góc nhọn )
=> EM = KN (2) từ (1) và (2)
=> EKNM là HBH => EK//DC=>EK//AB
a) Dễ thấy t/g BCE = t/g FDC ( c-g-c)
Suy ra CE = CF ( 1 )
Và t/g CDF = t/g FDC ( c-g-c )
Vì AF = DF
AE = DC
\(\widehat{FAE}=360-60-60-\widehat{DAB}=240-\widehat{DAB}\)
\(\widehat{FDC}=180-\widehat{DAB}+60=240-\widehat{DAB}\)
\(\Rightarrow\)\(\widehat{FAE}=\widehat{FDC}\)
t/g CDF = t/g FDC ( c-g-c )
EF = FC ( 2 )
Từ ( 1 ) và ( 2 ) suy ra t/g EFC đều
b) Ta có ABCD là hình bình hành
M là trung điểm BD
Suy ra M cũng là trung điểm AC
Suy ra MI ; IK ; MK lần lượt là đường trung bình tam giác ADF ; AFD ; AED
Suy ra MI = 1/2 DF; IK = 1/2 EF ; MK = 1/2 DE
Mà EDF là tam giác đều suy ra DF = DE = EF
Suy ra t/g MIK là t/g đều
Suy ra IMK = 60 độ