Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ làm phần a thôi nhé bạn !
Bài giải:
Xét tam giác EBC và tam giác FAE, vì ABCD là hình bình hành và hai tam giác ABE, ADF đều nên ta có:
* EB = EA
* BC = AD = AF
* ^EBC = 60o + ^ABC = 60o + (180o - ^BAD) = 360o - ^BAD - (^FAD + ^BAE) = ^EAF
Do đó 2 tam giác trên bằng nhau. Từ đó suy ra EC = EF (2 cạnh tương ứng).
Hoàn toàn tương tự với tam giác EBC và CDF, ta cũng suy ra được CF = FE.
Vậy EC = EF = CF hay tam giác EFC đều. (đpcm)
a) Dễ thấy t/g BCE = t/g FDC ( c-g-c)
Suy ra CE = CF ( 1 )
Và t/g CDF = t/g FDC ( c-g-c )
Vì AF = DF
AE = DC
\(\widehat{FAE}=360-60-60-\widehat{DAB}=240-\widehat{DAB}\)
\(\widehat{FDC}=180-\widehat{DAB}+60=240-\widehat{DAB}\)
\(\Rightarrow\)\(\widehat{FAE}=\widehat{FDC}\)
t/g CDF = t/g FDC ( c-g-c )
EF = FC ( 2 )
Từ ( 1 ) và ( 2 ) suy ra t/g EFC đều
b) Ta có ABCD là hình bình hành
M là trung điểm BD
Suy ra M cũng là trung điểm AC
Suy ra MI ; IK ; MK lần lượt là đường trung bình tam giác ADF ; AFD ; AED
Suy ra MI = 1/2 DF; IK = 1/2 EF ; MK = 1/2 DE
Mà EDF là tam giác đều suy ra DF = DE = EF
Suy ra t/g MIK là t/g đều
Suy ra IMK = 60 độ
#)Giải :
Xét \(\Delta EBC\) và \(\Delta FAE\), vì ABCD là hình bình hành và hai \(\Delta ABE;\Delta ADF\) đều nên ta có:
EB = EA
BC = AD = AF
EBC = 60o + \(\widehat{ABC}\) = 60o + (180o - \(\widehat{BAD}\)) = 360o - \(\widehat{BAD}\) - (\(\widehat{FAD}\)+ \(\widehat{BAE}\)) = \(\widehat{EAF}\)
=> \(\Delta EBC=\Delta FAE\Rightarrow EC=EF\)( cặp cạnh tương ứng bằng nhau )
Tương tự với \(\Delta EBC;\Delta CDF\), ta cũng suy ra được CF = FE.
=> EC = EF = CF hay tam giác EFC đều. (đpcm)