K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

Do tứ giác ADEF là hình vuông =) 2 đường chéo AE và DF đồng thời là đường phân giác

=) \(\widehat{O\text{D}A}\)=\(\widehat{\text{OA}F}\)( cùng = 450 )

Ta có : \(\widehat{FAD}\)+\(\widehat{DAB}\)+\(\widehat{HAB}\)+\(\widehat{FAH}\)= 3600

          900 + \(\widehat{DAB}\)+90+\(\widehat{FAH}\)= 3600

           1800 +\(\widehat{DAB}\)+\(\widehat{FAH}\) = 3600

                         \(\widehat{DAB}\)+\(\widehat{FAH}\) = 1800

 Mà \(\widehat{DAB}\)+\(\widehat{A\text{D}C}\)= 1800 ( 2 góc ở vị trí trong cùng phía )

 =) \(\widehat{FAH}\)\(\widehat{A\text{D}C}\) ( cùng cộng với \(\widehat{DAB}\)=1800 )

=) \(\widehat{FAH}\)\(\widehat{FAO}\)\(\widehat{A\text{D}C}\)\(\widehat{O\text{D}A}\)

=)           \(\widehat{OAH}\)=  \(\widehat{O\text{D}C}\)

b) Do tứ giác ABGH là hình vuông =) AH=AB

                Mà AB = CD

               =) AH = CD

 Xét tam giác ODC và tam giác OAH có ;

           OD = OA  

          \(\widehat{O\text{D}C}\)\(\widehat{OAH}\) ( chứng minh phần a)

          CD = AH (chứng minh trên )

=) Tam giác ODC = Tam giác OAH (c-g-c)

=) OC = OH ( 2 cạch tương ứng )

         

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Lời giải:
Vì $ABCD$ là hình bình hành nên $AO=OC$

Xét tam giác $AHO$ và $CKO$ có:

$\widehat{AHO}=\widehat{CKO}=90^0$

$\widehat{AOH}=\widehat{COK}$ (đối đỉnh)

$AO=CO$

$\Rightarrow \triangle AHO=\triangle CKO$ (ch-gn)

$\Rightarrow AH=CK$

Tứ giác $AHCK$ có 2 cạnh đối $AH, CK$ song song (do cùng vg với $BD$) và bằng nhau nên $AHCK$ là hbh.

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Hình vẽ: