Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tứ giác ADEF là hình vuông =) 2 đường chéo AE và DF đồng thời là đường phân giác
=) \(\widehat{O\text{D}A}\)=\(\widehat{\text{OA}F}\)( cùng = 450 )
Ta có : \(\widehat{FAD}\)+\(\widehat{DAB}\)+\(\widehat{HAB}\)+\(\widehat{FAH}\)= 3600
900 + \(\widehat{DAB}\)+900 +\(\widehat{FAH}\)= 3600
1800 +\(\widehat{DAB}\)+\(\widehat{FAH}\) = 3600
\(\widehat{DAB}\)+\(\widehat{FAH}\) = 1800
Mà \(\widehat{DAB}\)+\(\widehat{A\text{D}C}\)= 1800 ( 2 góc ở vị trí trong cùng phía )
=) \(\widehat{FAH}\)= \(\widehat{A\text{D}C}\) ( cùng cộng với \(\widehat{DAB}\)=1800 )
=) \(\widehat{FAH}\)+ \(\widehat{FAO}\)= \(\widehat{A\text{D}C}\)+ \(\widehat{O\text{D}A}\)
=) \(\widehat{OAH}\)= \(\widehat{O\text{D}C}\)
b) Do tứ giác ABGH là hình vuông =) AH=AB
Mà AB = CD
=) AH = CD
Xét tam giác ODC và tam giác OAH có ;
OD = OA
\(\widehat{O\text{D}C}\)= \(\widehat{OAH}\) ( chứng minh phần a)
CD = AH (chứng minh trên )
=) Tam giác ODC = Tam giác OAH (c-g-c)
=) OC = OH ( 2 cạch tương ứng )
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
góc ADH=góc CBK
=>ΔAHD=ΔCKB
=>AH=CK
mà AH//CK
nên AHCK là hình bình hành
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm của AC
AHCK là hình bình hành
=>AC cất HK tại trung điểm của mỗi đường
=>OH=OK
b: ΔAHD=ΔCKB
=>HD=BK
Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
\(\frac{AX}{YC}\)=\(\frac{AO}{OC}\)=\(\frac{AB}{DC}\)=\(\frac{AX}{DY}\)
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
\(\frac{AX}{DY}\)=\(\frac{SX}{XY}\)=\(\frac{XB}{YC}\)
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm
Ta cũng dễ dàng chứng mình được đường thẳng chứa 4 điểm đó là trùng trực của hai cạnh đấy sao khi chừng minh chúng thẳng hàng ở trên nhé!
Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
AXYCAXYC=AOOCAOOC=ABDCABDC=AXDYAXDY
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
AXDYAXDY=SXXYSXXY=XBYCXBYC
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm
1/
Xét tam giác AOD và tam giác BOC có
^CBD=^ADB; ^ACB=^CAD
=> tam giác AOD đồng dạng với tam giác BOC => OA/OC=OB/OD => OA.OD=OC.OB (dpcm)
2/
Ta có ^ABC=^ADC (2 góc đối hình bình hành)
Xét hai tam giác vuông BCE và tam giác vuông DCG có
^ECB=^GDC (cùng bù với ^ABC=^ADC)
=> tam giác BCE đồng dạng với tam giác DCG