tim x thuoc z biet
a) (x-1)(x+2) < 0
b) (x+3)(x-5) > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(x+5\right)^2>=0\forall x\)
\(\left(2y-8\right)^2>=0\forall y\)
Do đó: \(\left(x+5\right)^2+\left(2y-8\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+5=0\\2y-8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-5\\y=4\end{matrix}\right.\)
b: \(\left(x+3\right)\left(2y-1\right)=5\)
=>\(\left(x+3\right)\left(2y-1\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x+3;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;3\right);\left(2;1\right);\left(-4;-2\right);\left(-8;0\right)\right\}\)
dễ thôi
1/ x(x+3)=0 2/ (x-2)(5-x)=0 3/(x-1)(x2+1)=0
=> x=0 hoặc x+3=0 => x-2=0 hoặc 5-x=0 => x-1=0 hoặc x2+1=0
TH1: x=0 TH2: x+3=0 TH1: x-2=0 TH2: 5-x=0 TH1: x-1=0 TH2: x2+1=0
=> x= -3 => x=2 => x=5 => x=1 => x2 =-1
vậy x thuộc {0; -3} Vậy x thuộc { 2; 5 } =>x2=(-1)2 hoặc x2=12
TH1: x2=(-1)2 TH2: x2=12
=> x= -1 =>x=1
vậy x thuộc { 1; -1 }
tích cho mình nha bài mình làm đúng đấy
a)x(x+3)=0
=>x=0 hoặc x+3=0
x=0-3
x=-3
b)(x-2)(5-x)=0
=>x-2=0 hoặc 5-x=0
x=0+2 x=5-0
x=2 x=5
3)(x-1)(x2+1)=0
=>x-1=0 hoặc x2+1=0
x=0+1 x2=0-1=-1 mà x2>=0(với mọi x) (loại)
x=1
Vậy x=1
a)=>x-1;x-3 \(\in\)Ư(-5)={-1;-5;1;5}
còn lại thử từng TH nhé
b)\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
c)=>x2-4;x2-19 trái dấu
Ta có:x^2-4-(x^2-19)=x^2-4-x^2+19=15 >0
\(\Rightarrow\orbr{\begin{cases}x^2-4>0\\x^2-19< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x^2>4\\x^2< 19\end{cases}}\)
Ta có:4<x^2<19
=>x^2\(\in\){9;16}
=>x\(\in\){3;4}
\(\left(x-1\right)^2=\left(x-3\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-3\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2-\left[\left(x-3\right)^2\right]^2=0\)
\(\Leftrightarrow\left[\left(x-1\right)-\left(x-3\right)^2\right]\left[\left(x-1\right)+\left(x-3\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1-x^2+6x-9\right)\left(x-1+x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(-x^2+7x-10\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy: ...
a) (x-1).(x+2) < 0
TH1: x - 1< 0
x < 1
TH2: x + 2 < 0
x < -2
b) ( x +3).(x-5) > 0
TH1: x + 3 > 0
x> -3
TH2: x - 5 > 0
x > 5
KL: x > 5