Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(\left(-5+x\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-5+x=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=7\end{matrix}\right.\)
Vậy: \(x\in\left\{5;7\right\}\)
2) Ta có: \(\left(30-x\right)\left(2x-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}30-x=0\\2x-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=-30\\2x=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30\\x=8\end{matrix}\right.\)
Vậy: \(x\in\left\{30;8\right\}\)
3) Ta có: \(\left(-5-x\right)\left(17+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-5-x=0\\17+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=5\\x=0-17\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-17\end{matrix}\right.\)
Vậy: \(x\in\left\{-5;-17\right\}\)
4) Ta có: \(\left(-3x+18\right)\left(-5x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x+18=0\\-5x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-18\\-5x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{6;-2\right\}\)
Bài nay ta có hai vế bạn hãy đặt giả sử một trong hai vế bằng 0 rồi giải phương trình cho mỗi vế bằng o
a: (x^2+9)(9x^2-1)=0
=>9x^2-1=0
=>x^2=1/9
=>x=1/3 hoặc x=-1/3
b: (4x^2-9)(2^(x-1)-1)=0
=>4x^2-9=0 hoặc 2^(x-1)-1=0
=>x^2=9/4 hoặc x-1=0
=>x=1;x=3/2;x=-3/2
c: (3x+2)(9-x^2)=0
=>(3x+2)(3-x)(3+x)=0
=>\(\left[{}\begin{matrix}3x+2=0\\3-x=0\\3+x=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{2}{3};3;-3\right\}\)
d: (3x+3)^2(4x-4^2)=0
=>3x+3=0 hoặc 4x-16=0
=>x=4 hoặc x=-1
e: \(2^{\left(x-5\right)\left(x+2\right)}=1\)
=>(x-5)(x+2)=0
=>x-5=0 hoặc x+2=0
=>x=5 hoặc x=-2
a)=>x-1;x-3 \(\in\)Ư(-5)={-1;-5;1;5}
còn lại thử từng TH nhé
b)\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
c)=>x2-4;x2-19 trái dấu
Ta có:x^2-4-(x^2-19)=x^2-4-x^2+19=15 >0
\(\Rightarrow\orbr{\begin{cases}x^2-4>0\\x^2-19< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x^2>4\\x^2< 19\end{cases}}\)
Ta có:4<x^2<19
=>x^2\(\in\){9;16}
=>x\(\in\){3;4}
\(\left(x-1\right)^2=\left(x-3\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-3\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2-\left[\left(x-3\right)^2\right]^2=0\)
\(\Leftrightarrow\left[\left(x-1\right)-\left(x-3\right)^2\right]\left[\left(x-1\right)+\left(x-3\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1-x^2+6x-9\right)\left(x-1+x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(-x^2+7x-10\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy: ...
a) = 99x + (1+2+3+4+...+99)=0
99x+4950=0
99x=0-4950
99x=-4950
x=-4950:99
x=-50
\(-\left(-a+b+c\right)+\left(b-c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)
\(a-b-c+b-c-1=b-c+6-7+a-b+c\)
\(a-2c-1=a-1\)
\(-2c\ne0\)hay đẳng thức ko xảy ra
dễ thôi
1/ x(x+3)=0 2/ (x-2)(5-x)=0 3/(x-1)(x2+1)=0
=> x=0 hoặc x+3=0 => x-2=0 hoặc 5-x=0 => x-1=0 hoặc x2+1=0
TH1: x=0 TH2: x+3=0 TH1: x-2=0 TH2: 5-x=0 TH1: x-1=0 TH2: x2+1=0
=> x= -3 => x=2 => x=5 => x=1 => x2 =-1
vậy x thuộc {0; -3} Vậy x thuộc { 2; 5 } =>x2=(-1)2 hoặc x2=12
TH1: x2=(-1)2 TH2: x2=12
=> x= -1 =>x=1
vậy x thuộc { 1; -1 }
tích cho mình nha bài mình làm đúng đấy
a)x(x+3)=0
=>x=0 hoặc x+3=0
x=0-3
x=-3
b)(x-2)(5-x)=0
=>x-2=0 hoặc 5-x=0
x=0+2 x=5-0
x=2 x=5
3)(x-1)(x2+1)=0
=>x-1=0 hoặc x2+1=0
x=0+1 x2=0-1=-1 mà x2>=0(với mọi x) (loại)
x=1
Vậy x=1