tìm giá trị nhỏ nhất của biểu thức
\(9x^2+12x-11\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)
\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(A=\left|1-3x\right|+\left|3x-2\right|\)
\(A=\left|1-3x+3x-2\right|\)
\(A=\left|-1\right|=1\)
Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)
\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
\(a,x^2+12x+39=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\forall x\)
Dấu = xảy ra \(\Leftrightarrow x+6=0\)
\(\Leftrightarrow x=-6\)
Vậy ...
\(b,9x^2-12x=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\forall x\)
Dấu = xảy ra \(\Leftrightarrow3x-2=0\)
\(\Leftrightarrow x=\frac{2}{3}\)
Vậy ...
Trả lời:
a, \(x^2+12x+39=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\forall x\)
Dấu "=" xảy ra khi x + 6 = 0 <=> x = - 6
Vậy GTNN của biểu thức bằng 3 khi x = - 6
b, \(9x^2-12x=\left(3x\right)^2-2.3x.2+4-4=\left(3x-2\right)^2-4\ge-4\forall x\)
Dấu "=" xảy ra khi 3x - 2 = 0 <=> x = 2/3
Vậy GTNN của biểu thức bằng - 4 khi x = 2/3
A=9x^2+18xy-12x+13y^2-24y+5
\(=\left(3x\right)^2+2.3.3xy-2.3x.2+9y^2+4y^2-12y-12y+4+9-8\)
\(=\left[\left(3x\right)^2+\left(3y\right)^2+2^2+2.3x.3y+2.3x.2+2.3y.2\right]+\left[\left(2y\right)^2-2.2y.3+9\right]-8\)
\(=\left(3x+3y+2\right)^2+\left(2y-3\right)^2-8\ge-8\)
Vậy \(MinA=-8\Leftrightarrow\hept{\begin{cases}\left(3x+3y+2\right)^2=0\\\left(2y-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+3y+2=0\\2y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6,5\\y=1,5\end{cases}}}\)
\(Y=\sqrt{\left(3x+2\right)^2+7}\ge\sqrt{0+7}=\sqrt{7}\)
\(Y_{Min}=\sqrt{7}\Leftrightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)
\(\text{A=9x^2+18xy-12x+13y^2-24y+5}\)
\(=\left[\left(3x\right)^2+\left(3y\right)^2+2^2-12x+18xy-12y\right]+\left[\left(2y\right)^2-2.2y.3+9\right]-8\)
\(=\left(3x+3y-2\right)^2+\left(2y-3\right)^2-8\ge-8\)
Vậy \(MinA=-8\Leftrightarrow\hept{\begin{cases}3x+3y-2=0\\2y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1,5\\y=1,5\end{cases}}}\)
a) A = x2 + 12x + 39
= ( x2 + 12x + 36 ) + 3
= ( x + 6 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6
=> MinA = 3 ⇔ x = -6
B = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3
=> MinB = -4 ⇔ x = 2/3
b) C = 4x - x2 + 1
= -( x2 - 4x + 4 ) + 5
= -( x - 2 )2 + 5 ≤ 5 ∀ x
Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2
=> MaxC = 5 ⇔ x = 2
D = -4x2 + 4x - 3
= -( 4x2 - 4x + 1 ) - 2
= -( 2x - 1 )2 - 2 ≤ -2 ∀ x
Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2
=> MaxD = -2 ⇔ x = 1/2
Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3
Dấu "=" xảy ra <=> x + 6 = 0
=> x = -6
Vậy Min A = 3 <=> x = -6
Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> 3x - 2 =0
=> x = 2/3
Vậy Min B = -4 <=> x = 2/3
b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5
Dấu "=" xảy ra <=> x - 2 = 0
=> x = 2
Vậy Max C = 5 <=> x = 2
Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2
Dấu "=" xảy ra <=> 2x - 1 = 0
=> x = 0,5
Vậy Max D = -2 <=> x = 0,5
a) \(x^2\)\(+3x+7\)
=\(x^2\)\(+2.x.\frac{3}{2}\)\(+\frac{9}{4}\)\(+\frac{19}{4}\)
=\(\left(x+\frac{3}{2}\right)^2\)\(+\frac{19}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\)\(\ge0\)
Nên \(\left(x+\frac{3}{2}\right)^2\)\(+\frac{19}{4}\)\(\ge\frac{19}{4}\)
Dấu "=" xảy ra khi:
\(x+\frac{3}{2}\)\(=0\)
\(\Rightarrow x=-\frac{3}{2}\)
Vậy GTNN của \(x^2\)\(+3x+7\) là \(\frac{19}{4}\) khi \(x=-\frac{3}{2}\)
b) \(-9x^2+12x-15\)
=\(-\left(9x^2-12x+15\right)\)
=\(-\left(\left(3x\right)^2-2.3x.2+4+11\right)\)
=\(-\left(\left(3x-2\right)^2+11\right)\)
=\(-\left(3x-2\right)^2-11\)
Vì \(\left(3x-2\right)^2\)\(\ge0\)
Nên \(-\left(3x-2\right)^2-11\le-11\)
Dấu "=" xảy ra khi:
\(3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
Vậy GTLN của \(-9x^2+12x-15\) là \(-11\) khì \(x=\frac{2}{3}\)
c) \(11-10x-x^2\)
=\(-\left(x^2+10x-11\right)\)
=\(-\left(x^2+2.x.5+25-36\right)\)
=\(-\left(\left(x+5\right)^2-36\right)\)
=\(-\left(x+5\right)^2+36\)
Vì \(\left(x+5\right)^2\ge0\)
Nên \(-\left(x+5\right)^2+36\le36\)
Dấu "=" xảy ra khi:
\(x+5=0\)
\(\Rightarrow x=-5\)
Vậy GTLN \(11-10x-x^2\) là \(36\) khi \(x=-5\)
d)\(x^4+x^2+2\)
=\(\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
=\(\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}\)
Vì \(\left(x^2+\frac{1}{2}\right)^2\ge0\)
Nên \(\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Dấu "=" xảy ra khi:
\(x^2+\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{\sqrt{2}}\)
Vậy GTNN của \(x^4+x^2+2\) là \(\frac{7}{4}\) khi \(x=\frac{1}{\sqrt{2}}\)
a) \(x^2+3x+7=x^2+2.1,5x+1,5^2+4,75=\left(x+1,5\right)^2+4,75\ge4,75\)
Đẳng thức xảy ra khi : \(x+1,5=0\Rightarrow x=-1,5\)
Vậy giá trị nhỏ nhất của x2 + 3x + 7 là 4,75 khi x = -1,5
b) \(-9x^2+12x-15=-\left(9x^2-12x+15\right)=-\left[\left(3x\right)^2-2.2.3x+2^2+11\right]\)
\(=-\left[\left(3x-2\right)^2+11\right]=-\left(3x-2\right)^2-11\le-11\)
Đẳng thức xảy ra khi : \(3x-2=0\Rightarrow x=\frac{2}{3}\)
Vậy giá trị lớn nhất của -9x2 +12x - 15 là -11 khi \(x=\frac{2}{3}\)
c) \(11-10x-x^2=-x^2-10x+11=-\left(x^2+10x-11\right)=-\left(x^2+2.5x+5^2-36\right)\)
\(=-\left[\left(x+5\right)^2-36\right]=-\left(x+5\right)^2+36\le36\)
Đẳng thức xảy ra khi : \(x+5=0\Rightarrow x=-5\)
Vậy giá trị lớn nhất của 11 - 10x -x2 là 36 khi x = -5.
ta có : \(9x^2+12x-11=9x^2+12x+4-15=\left(3x+2\right)^2-15\ge-15\)
\(\Rightarrow\) GTNN của \(9x^2+12x-11\) là \(-15\) khi \(x=\dfrac{-2}{3}\)