K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

\(A=x^2+y^2+xy-3x-3y+2006\)

\(4A=4x^2+4y^2+4xy-12x-12y+8024\)

\(4A=\left(4x^2+4xy+y^2\right)+3y^2-12x-12y+8024\)

\(4A=\left[\left(2x+y\right)^2-2\left(2x+y\right).3+9\right]+3\left(y^2-2y+1\right)+8012\)

\(4A=\left(2x+y-3\right)^2+3\left(y-1\right)^2+8012\)

Mà  \(\left(2x+y-3\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)\(\Rightarrow3\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow4A\ge8012\)

\(\Leftrightarrow A\ge2003\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}2x+y-3=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Vậy  \(A_{Min}=2003\Leftrightarrow x=y=1\)

19 tháng 11 2017

Bạn nhân 4 lên rồi tách ra hằng đẳng thức

19 tháng 11 2017

Ta có 

A=x2+xy+y2-3x-3y+2016

=>4A=4x2+4xy+y2 -6(2x+y) + 9 + 3(y2-2y+1) +8052

         =(2x+y)2-6(2x+y)+9 + 3(y-1)2 +8052 

        =(2x+y-3)2+3(y-1)2+8052>= 8052

     =>A>=2013

Dấu bang xay ra khi x=y=1

21 tháng 7 2015

A = [(x2 - 10xy + 25y2) + 2.(x - 5y).7 + 49 ] + (y2 - 6y + 9) + 1

= [(x -5y)2 + 2.(x - 5y) + 72] + (y - 3)2 + 1 = (x - 5y + 7)2 + (y - 3)2 + 1 \(\ge\) 0 + 0 + 1 = 1

=> GTNN của A bằng 1 khi x - 5y + 7 = 0 và y - 3 = 0 

=> y = 3 và x = 8

B = (x+ xy + \(\frac{y^2}{4}\)) - 2.(x + \(\frac{y}{2}\)). \(\frac{3}{2}\) + \(\frac{9}{4}\) + \(\frac{3y^2}{4}\) - \(\frac{3y}{2}\) + \(\frac{8023}{4}\)=[ (x + \(\frac{y}{2}\))2  - 2.(x + \(\frac{y}{2}\)). \(\frac{3}{2}\) + (\(\frac{3}{2}\))2 ] + 3. (\(\frac{y}{2}\) - 2)2 + \(\frac{7975}{4}\)

= (x + \(\frac{y}{2}\) - \(\frac{3}{2}\) )2 +   3. (\(\frac{y}{2}\) - 2)2 + \(\frac{7975}{4}\) \(\ge\) 0 + 0 + \(\frac{7975}{4}\) = \(\frac{7975}{4}\)

=> GTNN của B = \(\frac{7975}{4}\) khi  x + \(\frac{y}{2}\) - \(\frac{3}{2}\) = 0 và \(\frac{y}{2}\)  - 2 = 0 

=> y = 4 và x = -1/2 

AH
Akai Haruma
Giáo viên
30 tháng 8 2021

Lời giải:

$2Q=2x^2+2xy+2y^2-6x-6y+3998$

$=(x^2+2xy+y^2)+x^2+y^2-6x-6y+3998$

$=(x+y)^2-4(x+y)+(x^2-2x)+(y^2-2y)+3998$

$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+3992$

$=(x+y-2)^2+(x-1)^2+(y-1)^2+3992\geq 3992$

$\Rightarrow Q\geq 1996$

Vậy $Q_{\min}=1996$ khi $x+y-2=x-1=y-1=0\Leftrightarrow x=y=1$

------------------

$R=(x^2+2xy+y^2)+x^2-2x+2y+15$

$=(x+y)^2+2(x+y)+x^2-4x+15$

$=(x+y)^2+2(x+y)+1+(x^2-4x+4)+10$

$=(x+y+1)^2+(x-2)^2+10\geq 10$
Vậy $R_{\min}=10$ khi $x+y+1=x-2=0$

$\Leftrightarrow x=2; y=-3$

11 tháng 8 2023

cho em hỏi khúc này là sao ạ:

=(x+y−2)^2+(x−1)^2+(y−1)^2+3992≥3992
      ^     
      |      em chỉ chx hiểu khúc này thôi

6 tháng 11 2019

\(A=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)

\(=\left[x\left(x-7\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]\)

\(=\left[x^2-7x\right]\left[x^2-7x+12\right]\)

Đặt: \(t=x^2-7x\)

=> \(A=t\left(t+12\right)=t^2+12t+36-36\)

\(=\left(t+6\right)^2-36\ge-36\)

Dấu "=" xảy ra <=> \(t=-6\)

khi đó: \(x^2-7x=-6\Leftrightarrow x^2-x-6x+6=0\)

<=> \(x\left(x-1\right)-6\left(x-1\right)=0\)

<=> (x - 6 ) ( x -  1) =0

<=> x = 6 hoặc x =1

Vậy GTNN của A là -36  đạt tại x =6 hoặc x =1 .

b) \(B=x^2+xy-y^2-3x-3y\)

Xem lại đề nhé \(y^2\)hay \(-y^2\)?