Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = [(x2 - 10xy + 25y2) + 2.(x - 5y).7 + 49 ] + (y2 - 6y + 9) + 1
= [(x -5y)2 + 2.(x - 5y) + 72] + (y - 3)2 + 1 = (x - 5y + 7)2 + (y - 3)2 + 1 \(\ge\) 0 + 0 + 1 = 1
=> GTNN của A bằng 1 khi x - 5y + 7 = 0 và y - 3 = 0
=> y = 3 và x = 8
B = (x2 + xy + \(\frac{y^2}{4}\)) - 2.(x + \(\frac{y}{2}\)). \(\frac{3}{2}\) + \(\frac{9}{4}\) + \(\frac{3y^2}{4}\) - \(\frac{3y}{2}\) + \(\frac{8023}{4}\)=[ (x + \(\frac{y}{2}\))2 - 2.(x + \(\frac{y}{2}\)). \(\frac{3}{2}\) + (\(\frac{3}{2}\))2 ] + 3. (\(\frac{y}{2}\) - 2)2 + \(\frac{7975}{4}\)
= (x + \(\frac{y}{2}\) - \(\frac{3}{2}\) )2 + 3. (\(\frac{y}{2}\) - 2)2 + \(\frac{7975}{4}\) \(\ge\) 0 + 0 + \(\frac{7975}{4}\) = \(\frac{7975}{4}\)
=> GTNN của B = \(\frac{7975}{4}\) khi x + \(\frac{y}{2}\) - \(\frac{3}{2}\) = 0 và \(\frac{y}{2}\) - 2 = 0
=> y = 4 và x = -1/2
\(A=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)
\(=\left[x\left(x-7\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]\)
\(=\left[x^2-7x\right]\left[x^2-7x+12\right]\)
Đặt: \(t=x^2-7x\)
=> \(A=t\left(t+12\right)=t^2+12t+36-36\)
\(=\left(t+6\right)^2-36\ge-36\)
Dấu "=" xảy ra <=> \(t=-6\)
khi đó: \(x^2-7x=-6\Leftrightarrow x^2-x-6x+6=0\)
<=> \(x\left(x-1\right)-6\left(x-1\right)=0\)
<=> (x - 6 ) ( x - 1) =0
<=> x = 6 hoặc x =1
Vậy GTNN của A là -36 đạt tại x =6 hoặc x =1 .
b) \(B=x^2+xy-y^2-3x-3y\)
Xem lại đề nhé \(y^2\)hay \(-y^2\)?
Lời giải:
$2Q=2x^2+2xy+2y^2-6x-6y+3998$
$=(x^2+2xy+y^2)+x^2+y^2-6x-6y+3998$
$=(x+y)^2-4(x+y)+(x^2-2x)+(y^2-2y)+3998$
$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+3992$
$=(x+y-2)^2+(x-1)^2+(y-1)^2+3992\geq 3992$
$\Rightarrow Q\geq 1996$
Vậy $Q_{\min}=1996$ khi $x+y-2=x-1=y-1=0\Leftrightarrow x=y=1$
------------------
$R=(x^2+2xy+y^2)+x^2-2x+2y+15$
$=(x+y)^2+2(x+y)+x^2-4x+15$
$=(x+y)^2+2(x+y)+1+(x^2-4x+4)+10$
$=(x+y+1)^2+(x-2)^2+10\geq 10$
Vậy $R_{\min}=10$ khi $x+y+1=x-2=0$
$\Leftrightarrow x=2; y=-3$
cho em hỏi khúc này là sao ạ:
=(x+y−2)^2+(x−1)^2+(y−1)^2+3992≥3992
^
| em chỉ chx hiểu khúc này thôi
đặt x+y=a; xy=b; ta có \(b\le\frac{a^2}{4}\)
B = \(a^2-b-3a+2019\ge a^2-\frac{a^2}{4}-3a+2019=\frac{3}{4}\left(a-2\right)^2+2016\)\(\ge2016\)
B đạt GTNN khi a= \(2;a^2=4b\) <=> x=y = 1
Đặt \(A=x^2+y^2+xy+3x+3y+2018\)
\(4.A=4x^2+4y^2+4xy+12x+12y+8072\)
\(4.A=\left(4x^2+4xy+y^2\right)+3y^2+12x+12y+8072\)
\(4.A=\left[\left(2x+y\right)^2+2\left(2x+y\right).3+9\right]+3\left(y^2+2y+1\right)+8060\)
\(4.A=\left(2x+y+3\right)^2+3\left(y+1\right)^2+8060\)
Mà \(\left(2x+y+3\right)^2\ge0\forall x;y\)
\(\left(y+1\right)^2\ge0\forall y\)\(\Rightarrow3\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow4.A\ge8060\)
\(\Leftrightarrow A\ge2015\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}2x+y+3=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}\)
Vậy ...