cmr khong co cac so x,y,x thoa man moi dang thuc sau: A = 2x^2 + y^2 - 2xy + x + 2 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x^2 + y^2 + 3xy + 3x + 2y + 2 = 0
<=> 16x^2 + 8y^2 + 24xy + 24x + 16y + 16 = 0
<=> (4x)^2 + 24x(y+1) + 8y^2 + 16y + 16 = 0
<=> (4x)^2 + 24x(y+1) + [3(y + 1)]^2 - [3(y + 1)]^2 + 8y^2 + 16y + 16 = 0
<=> (4x + 3y + 3)^2 - 9y^2 - 18y - 9 + 8y^2 + 16y + 16 = 0
<=> (4x + 3y + 3)^2 - y^2 - 2y - 1 + 8 = 0
<=> (4x + 3y + 3)^2 - (y + 1)^2 = - 8
<=> (y + 1)^2 - (4x + 3y + 3)^2 = 8
<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8
<=> 4(x + y + 4)( - 4x - 2y - 2) = 8
<=> (x + y + 4)( 2x + y + 1) = -1
=>
{x + y + 4 = -1
{2x + y + 1 = 1
=> x = 2 và y = - 4
{x + y + 4 = 1
{2x + y + 1 = - 1
=> x = - 2 và y = 2
vậy nghiệm (x;y) = (2 ; - 4) (-2; 2)
^^ ko hiểu thì bình luận
Ta có: \(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2}\ge0;\left|x+y+z\right|\ge0\)
Mà theo đề: \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
=> \(\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{\left(y+\sqrt{2}\right)^2}=\left|x+y+z\right|=0\)
=> \(x-\sqrt{2}=y+\sqrt{2}=x+y+z=0\)
=> \(x=\sqrt{2};y=-\sqrt{2};z=0\).
Ap dung BDT Bunhiacopxki , ta co :
( x2 + y2)2 = ( \(\sqrt{x^4}+\sqrt{y^4}\))2 = \(\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}.\sqrt{y^3}\right)\)2 ≤ ( x+y)( x3 + y3) = 2(x+ y)
⇔ ( x2 + y2)2 ≤ 2( x + y)
⇔ ( x2 + y2)4 ≤ 4( x + y)2 ≤ 4( x2 + y2)( 12 + 12) = 8( x2 + y2)
⇔ ( x2 + y2)4 ≤ 8( x2 + y2)
⇔ ( x2 + y2)3 ≤ 8
⇔ x2 + y2 ≤ 2
Dau " =" xay ra khi : x = y = 1
P/s : Mk lam thu thui nha , khong chac dau
Đời về bản là buồn... cười!!!Phùng Khánh LinhHong Ra Onchú tuổi gìNguyễn Ngô Minh TríNhã Doanh,.....
Mk can gap gap , mai thi hoc ky 2 rui nhen
\(A=2x^2+y^2-2xy+x+2\)
\(A=\left(x^2-2xy+y^2\right)+\left[x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{7}{4}\)
\(A=\left(x-y\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)
Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(x+\frac{1}{2}\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x-y\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{7}{4}=A\ge\frac{7}{4}>0\forall x;y\)
Vậy không có các số tự nhiên thỏa mã đẳng thức \(A=2x^2+y^2-2xy+x+2=0\)