Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{1}{5xy}+\frac{xy}{20}+\frac{5}{x+2y+5}+\frac{x+2y+5}{20}-\frac{xy}{20}-\frac{x+2y+5}{20}\)
\(\ge2\sqrt{\frac{1}{5xy}.\frac{xy}{20}}+2.\sqrt{\frac{5}{x+2y+5}.\frac{x+2y+5}{20}}-\frac{x\left(3-x\right)+x+2\left(3-x\right)+5}{20}\)
\(=2.\frac{1}{10}+2.\frac{1}{2}-\frac{-x^2+2x+11}{20}\)
\(=\frac{x^2-2x+1}{20}+\frac{3}{5}=\frac{\left(x-1\right)^2}{20}+\frac{3}{5}\ge\frac{3}{5}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{5xy}=\frac{xy}{20}\\\frac{5}{x+2y+5}=\frac{x+2y+5}{20}\\\left(x-1\right)^2=0,x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\x+2y+5=10\\x=1,x+y=3\end{cases}\Leftrightarrow}x=1,y=2\)
Vậy min P=3/5 khi x=1, y=2
Em co cach nay ngan gon hon, cac ban co the tham khao
P=\(\frac{1}{5xy}\) + \(\frac{5}{x+2y+5}\)=\(\frac{1}{5xy}\)+\(\frac{25}{5\left(x+2y+5\right)}\)
= \(\frac{1^2}{5xy}\)+\(\frac{5^2}{5\left(x+2y+5\right)}\)
\(\geq\) \(\frac{\left(1+5\right)^{^2}}{5xy+5\left(x+2y+5\right)}\)
=\(\frac{36}{5\left(xy+x+2y+2+3\right)}\)
=\(\frac{36}{5\left(\left(x+2\right)\left(y+1\right)+3\right)}\)
=\(\frac{36}{5\left(\frac{\left(x+y+3\right)^2}{4}+3\right)}\) (do \((x+2)(y+1) \leq \frac {(x+y+3)^2}{4}\) )
=\(\frac{36}{5\left(\frac{\left(3+3\right)^2}{4}+3\right)}\) (do \(x+y \leq 3\) )
=\(\frac{3}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{5xy}=\frac{1}{x+2y+5}\\x+2=y+1\\x+y=3\end{cases}}\Leftrightarrow x=2,y=1\)
Vậy GTNN của P là 3/5 khi và chỉ khi x=2,y=1
ap dung bunhiacopki
\(\left(x^4+1\right)\left(y^4+1\right)>=\left(x^2+y^2\right)^2>=\left[\frac{\left(x+y\right)^2}{2}\right]^2=4\)
do do P>=4+2013=2017
= xảy ra <=>x=y=1