K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=2001^n+8^n.47^n+625^n

=(...001) + (8.47)^n+(...625)

=(...001)+(...376)+(...625)

=(...002)

27 tháng 8 2021

\(C=2001^n+2^{3n}.47^n+25^{2n}\)

\(=2001^n+376^n+625^n\)

2001 đồng dư với 001 ( mod100 )

=> 2001n đồng dư với 001 ( mod100 )

376 đồng dư với 076 ( mod100 )

=> 376n đồng dư với 076 ( mod100 )

625 đồng dư với 025 ( mod100 )

=> 625n đồng dư với 025 ( mod100 )

=> 2001n + 376n + 625n đồng dư với 001 + 076 + 025 ( mod200 )

=> ........002 ( mod100 )

=> đpcm

30 tháng 10 2016

chữ số tận cùng hay 3 chữ số tận cùng?

30 tháng 10 2016

3 chữ số tận cùng thì thế này

\(C=2001^n+2^{3n}.47^n+25^{2n}\)

\(=2001^n+376^n+625^n\)

2001 đồng dư với 001 (mod100)

=>2001n đồng dư với 001 (mod100)

376 đồng dư với 076(mod100)

=>376n đồng dư với 076 (mod100)

625 đồng dư với 025(mod100)

=>625n đồng dư với 025 (mod100)

=>2001n+376n+625n đồng dư với 001+076+025(mod200)

=>.............................................002(mod100)

=>đpcm

31 tháng 1 2018

Với x = 1 thì biểu thức tận cùng là 681 mà?

25 tháng 6 2018

a) Để một số chia hết cho 100 thì số đó phải có 2 chữ số tận cùng là 0

\(5^4=5^2\cdot5^2=25\cdot25\)có tận cùng là 25 

Nên \(5^4+375\)có tận cùng là 2 chữ số 0 

\(\Rightarrow5^4+375⋮100\)

b) \(2001^n+2^{3n}\cdot47^n+25^{2n}\)

Xét : \(2001^n\)có tận cùng là 1 nên lũy thừa với số mũ bao nhiêu đều có tận cùng là 1

\(2^{3n}\cdot47^n=\left(2^3\right)^n\cdot47^n=8^n\cdot47^n=376^n\)

\(25^{2n}=\left(25^2\right)^n=625^n\)

\(376^n\)và \(625^n\)có chữ số tận cùng là 6 và 5 nên lũy thừa với số mũ bao nhiêu cũng sẽ có tận cùng là 6 hoặc 5

\(\Rightarrow2001^n+376^n+625^n\)có tận cùng là 2

12 tháng 10 2017

Cristiano Ronaldoĩ 17/05/2015 lúc 10:21

 Báo cáo sai phạm

Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9. Tổng các chữ số của x ; của 2x; của 3x cộng lại là 1 + 2+ ……+ 9 = 45, chia hết cho 9, do đó tổng x + 2x + 3x cũng chia hết cho 9, tức là 6x chia hết cho 9 => x chia hết cho 3 

Do x có tận cùng bằng 2 nên 2x tận cùng bằng 4 và 3x tận cùng bằng 6

Gọi a và b là các chữ số hàng trăm, hàng chục của 3x thì 

a,b∈{1;3;5;7;8;9} (Trừ các số 2, 4, 6) mặt khác x chia hết cho3 nên 3x chia hết cho 9.

Tức là: abc chia hết cho 9 do đó a +b + 6 chia hết cho 9 chú ý : 4 

16 tháng 6 2018

Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9. Tổng các chữ số của x ; của 2x; của 3x cộng lại là 1 + 2+ ……+ 9 = 45, chia hết cho 9, do đó tổng x + 2x + 3x cũng chia hết cho 9, tức là 6x chia hết cho 9 => x chia hết cho 3

Do x có tận cùng bằng 2 nên 2x tận cùng bằng 4 và 3x tận cùng bằng 6

Gọi a và b là các chữ số hàng trăm, hàng chục của 3x thì

a,b∈{1;3;5;7;8;9} (Trừ các số 2, 4, 6) mặt khác x chia hết cho3 nên 3x chia hết cho 9.

Tức là: abc chia hết cho 9 do đó a +b + 6 chia hết cho 9 chú ý : 4

7 tháng 12 2023

Bài 1:

a; (n + 4) \(⋮\) ( n - 1)  đk n ≠ 1

 n - 1 + 5  ⋮ n - 1

            5  ⋮ n - 1

n - 1     \(\in\) Ư(5) = {-5; -1; 1; 5}

\(\in\) { -4; 0; 2; 6}

 

7 tháng 12 2023

Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1

          n2 + 2n + 1 - 4 ⋮ n + 1

          (n + 1)2      -  4 ⋮ n + 1

                                4 ⋮ n + 1

           n + 1  \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}

           n  \(\in\)  {-5; -3; -2; 0; 1; 3}

           

23 tháng 12 2017

a) Gọi ƯCLN (n + 3; n + 2) = d.

Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d

Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.

b) Gọi ƯCLN (3n+4; 3n + 7) = đ.

Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên

d = 1 hoặc d = 3.

Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.

c) Gọi ƯCLN (2n + 3; 4n + 8) = d.

Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d

nên d = 1 hoặc d = 2.

Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.