Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
Đặt 111...1 ( n chữ số) = x, ta có:
b = 222...2 ( n chữ số) = 2x.
a = 111...1 ( 2n chữ số) = \(\left(10^n+1\right)x\)
Ta có:
\(\left(10^n+1\right)x-2x=10^n.x+x-2x=10^nx-x\)
\(=\left(9x+1\right).x-x=9x^2+x-x=9x^2=\left(3x\right)^2\)
Vật a-b là một số chính phương
Ta có :
54n + 375
= (54)n +375
= 725n + 375
= (.....725) + 375
= ......1000
Vì 54n + 375 có 4 chữ số tận cùng là 1000 mà 1000 \(⋮\)1000
\(\Rightarrow\)54n + 375 \(⋮\)1000
TQuynh ơi !!! đề bài là : \(5^{4^n}\) nhé !! Lũy thừa tầng nha !!
Chứ ko pk là 54n
Ta có:
a) ( 3 n + 1 ) 2 - 25 = 3(3n - 4)(n + 2) chia hết cho 3;
b) ( 4 n + 1 ) 2 - 9 = 8(2n - 1)(n +1) chia hết cho 8.
\(\left(4n+3\right)^2-25=\left(4n+3-5\right)\left(4n+3+5\right)\)
\(=\left(4n-2\right)\left(4n+8\right)=2.\left(2n-1\right).4.\left(n+2\right)=8\left(2n-1\right)\left(n+2\right)⋮8\)
\(\left(2n+3\right)^2-9=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\)
\(\left(3n+4\right)^2-16=\left(3n+4-4\right)\left(3n+4+4\right)\)
\(=3n\left(3n+8\right)⋮3\)
Xét 2002 số như sau
2002
20022002
200220022002
.....................
20022002...2002 ( 2002 số 2002 )
Ta có, khi chia một số cho 2001 có 2001 trường hợp có số dư khác nhau gồm 0,1,2,3,4,...,2000
Theo nguyên lý Dirichlet, trong 2002 số trên có ít nhất hai số có cùng số dư khi chia cho 2001 . Gọi hai số đó là ai và aj
Suy ra : ai - aj chia hết cho 2001 hay
20022002...2002 - 20022002...2002 chia hết cho 2001
( i số 2002 ) ( j số 2002 )
\(\Rightarrow\)\(20022002...2002000...0=20022002...2002+1000...0\)chia hết cho 2001
( i - j số 2002) ( j chữ số 0) ( i - j số 2002)
Mà 1000...00 không chia hết cho 2001. Suy ra 20022002...2002 chia hết cho 2001
Ta có điều cần chứng minh
=2001^n+8^n.47^n+625^n
=(...001) + (8.47)^n+(...625)
=(...001)+(...376)+(...625)
=(...002)
\(C=2001^n+2^{3n}.47^n+25^{2n}\)
\(=2001^n+376^n+625^n\)
2001 đồng dư với 001 ( mod100 )
=> 2001n đồng dư với 001 ( mod100 )
376 đồng dư với 076 ( mod100 )
=> 376n đồng dư với 076 ( mod100 )
625 đồng dư với 025 ( mod100 )
=> 625n đồng dư với 025 ( mod100 )
=> 2001n + 376n + 625n đồng dư với 001 + 076 + 025 ( mod200 )
=> ........002 ( mod100 )
=> đpcm