1. Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm I của 1 đoạn thẳng đó. Chứng minh rằng:
a) \(\Delta\)AIC = \(\Delta\)BID và \(\Delta\)AID = \(\Delta\)BIC ;
b) AC // BD và AD // BC ;
c) \(\Delta\)ABC = \(\Delta\)BDA và \(\Delta\)CAD = \(\Delta\)DBA.
2. Cho hai đoạn thẳng AB và CD song song và bằng nhau. Gọi I là giao điểm của AC và BD. Chứng minh rằng:
a) I là trung điểm của mỗi đoạn thẳng AC và BD ;
b) AD // BC.
3. Qua trung điểm I của đoạn thẳng BC, kẻ đường vuông góc với BC. Trên đường thẳng đó lấy điểm A.
a) Chứng minh AI là tia phân giác của góc \(\widehat{BAC}\);
b) Trên tia đối của tia IA lấy điểm D sao cho ID = IA. Chứng minh rằng: AB = AC = CD = DB.
4. Cho \(\Delta\)ABC vuông tại A. Phân giác góc B cắt AC tại D. Lấy điểm E trên đoạn thẳng BC sao cho BE = BA. Gọi I là giao điểm của BD và AE.
a) Chứng minh \(\Delta\)BAD = \(\Delta\)BED.
b) So sánh AD và ED, tính \(\widehat{BED}\).
c) Chứng minh AI = EI và AE \(\perp\)BD.
5. Cho tam giác ABC, hai đường phân giác AD, BE. Chứng minh:
a) Nếu \(\widehat{ADC}\)= \(\widehat{BEC}\)thì \(\widehat{A}\) = \(\widehat{B}\) ;
b) Nếu \(\widehat{ADB}\) = \(\widehat{BEC}\) thì \(\widehat{A}\) + \(\widehat{B}\)= \(120^0\)
6. Cho tam giác ABC ( \(\widehat{A}\) \(\ne\) \(90^0\)). Trên nửa mặt phẳng bờ AB không chứa điểm C , vẽ tia Ax \(\perp\) AB, trên đó lấy điểm E sao cho AE = AB , trên nửa mặt phẳng bờ AC không chứa điểm B, vẽ tia Ay \(\perp\) AC , trên đó lấy điểm D sao cho AD = AC.
a) Chứng minh rằng BD = CE và BD \(\perp\) CE ;
b) Hai đường thẳng AB và DE có vuông góc với nhau không? Vì sao?
7. Cho tam giác ABC có \(\widehat{A}\) = \(80^0\), \(\widehat{B}\) = \(60^0\). Trên đường thẳng BC lấy các điểm BC lấy các điểm B' và C' sao cho BB' = AB và CC' = AC. Tính số đo các góc của tam giác AB'C' .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAID=ΔBIC có:
IA=IB(gt)
IC=ID(gt)
góc AID=góc CIB
Vậy ΔAID=ΔBIC (c-g-c)
=>góc IBC=góc DAB (2 góc tương ứng)
Mà góc IBC và góc DAB là hai góc so le trong
=>AD//BC (dấu hiệu nhận biết)
Vì ΔAID=ΔBIC
=>AD=CB (2 cạnh tương ứng)
Mà M,N lần lượt là trung điểm của AD và BC=>AM=NB
Xét t/g AIM và t/g BIN có :
AI=IB(gt)
NB=AM(cmt)
góc MAI=góc IBN (cmt)
Vậy t/g AIM=t/g BIN (c-g-c)
=>MI=NI (2 cạnh tương ứng)
Vì t/g AIM=t/g BIN =>góc AIM=góc NIB (2 góc tương ứng)
Mà góc AIM+góc AIN=180 độ
=>góc NIB+góc AIN=180 độ
=>M,I,N thẳng hàng
Bạn tự vẽ hình
Ta có:
AIC + AID = AID + DIB = 180 (2 góc kề bù)
Vậy AIC = DIB
Bạn làm tương tự
B1: Lần lượt lấy A và B làm tâm, ta quay hai cung tròn với bán kính R( Lưu ý R>1/2AB) Hai cung tròn (A;r) và (B;r) cắt nhay tại hai điểm M và M' b2: Nối MM' ta được đường trung trực MM' của đoạn thẳng AB.
a, gọi O là trung điểm của đoạn thẳng AB
Theo giả thiết:
Đoạn thẳng CD cắt AB tại O
=> đoạn thẳng CD là đường trung trực của đoạn thẳng AB
Hay AB_|_ CD và OC =OD; OA=OB
nên góc (AOC=BOC=BOD=AOD=90°) (1)
Nối B với C và B với D.
Nối D với A và A với C.
Xét tam giác vuông COB và tam giác vuông DOB ,có:
OC=OD
OB cạnh chung
=> tam giác vuông COB = tam giác vuông DOB(c.g.c theo (1))
b, từ (1) suy ra:
Tứ giác ACBD la hình thoi
=>AC=CB=BD=DA( định nghĩa)
AD cạnh chung của tam giác ACB và tam giác ADB
=> tam giác ACB=tam giác ADB(c.c.c)
c,
Theo (1) thì: góc AOC=góc AOD=90°
nếu AD<AC (gt)
=> góc AOD< góc AOC( định lý 1 về góc và cạnh đối diện trong tam giác)
=>Vậy khi đó AB không thể vuông góc với CD (đpcm).
a:Xét ΔAIC và ΔBID có
IA=IB
\(\widehat{AIC}=\widehat{BID}\)
IC=ID
Do đó: ΔAIC=ΔBID
Xét ΔAID và ΔBIC có
IA=IB
\(\widehat{AID}=\widehat{BIC}\)
ID=IC
Do đó: ΔAID=ΔBIC
b: Xét tứ giác ADBC có
I là trung điểm của AB
I là trung điểm của CD
Do đó: ADBC là hình bình hành
Suy ra: AC//BD và AD//BC
c: Xét ΔABC và ΔBAD có
AB chung
BC=AD
AC=BD
Do đó: ΔABC=ΔBAD
Xét ΔCAD và ΔDBC có
CA=DB
AD=BC
CD chung
Do đó: ΔCAD=ΔDBC
Xét \(\Delta AIC\) và \(\Delta BID\)có :
\(AI=IB\left(gt\right)\)
\(\widehat{AIC}=\widehat{BID}\)( hai góc đối đỉnh )
\(CI=ID\left(gt\right)\)
\(\Rightarrow\Delta AIC=\Delta BID\left(c.g.c\right)\)
\(\Rightarrow\widehat{ACI}=\widehat{BID}\)( hai góc tương ứng )
Chứng minh tương tự \(\widehat{ADI}=\widehat{ICB}\)
Xét \(\Delta CAD\)và \(\Delta DBC\)có :
\(\widehat{ACI}=\widehat{BID}\left(cmt\right)\)
\(CD\)chung
\(\widehat{ADI}=\widehat{ICB}\left(cmt\right)\)
\(\Rightarrow\Delta CAD=\Delta DBC\left(g.c.g\right)\)
Bài 4:
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)
c: Ta có: ΔBAE cân tại B
mà BI là đường phân giác
nên I là trung điểm của AE
hay IA=IE
Ta có: BA=BE
DA=DE
Do đó: BD là đường trung trực của AE
=>BD vuông góc với AE