K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

Ta có: E là trung điểm AB (gt)

F là trung điểm DC (gt)

AB = DC (ABCD là hình bình hành (gt))

\(\Rightarrow\)AE = FC

Xét \(\Delta ADE\)\(\Delta CBF\)có:

AD = BC (ABCD là hình bình hành (gt))

\(\widehat{A}=\widehat{C}\) (ABCD là hình bình hành (gt))

AE = FC (cmt)

\(\Rightarrow\)\(\Delta ADE = \Delta CBF (cgc)\)

\(\Rightarrow\)\(\Delta ADE \sim \Delta CBF\)

a) Xét tứ giác AMND có 

AM//ND

\(AM=ND\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)

Do đó: AMND là hình bình hành

Suy ra: AD=MN

b) Xét tứ giác BCNM có 

BM//CN

\(BM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)

Do đó: BCNM là hình bình hành

Xét tứ giác AMCN có 

AM//CN

\(AM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)

Do đó: AMCN là hình bình hành

Suy ra: AN//CM

hay EN//MF

Xét tứ giác BMDN có

BM//DN

\(BM=DN\left(\dfrac{1}{2}AB=\dfrac{1}{2}DC\right)\)

Do đó: BMDN là hình bình hành

Suy ra: BN//MD

hay NF//ME

Xét tứ giác MENF có 

ME//NF(cmt)

MF//NE(cmt)

Do đó: MENF là hình bình hành

a: Gọi O là giao của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét tứ giác AECG có

AE//CG

AE=CG

Do đó: AECG là hình bình hành

=>AG//CE và AG=CE

Xét tứ giác AHCF có

AH//CF

AH=CF

Do đó: AHCF là hình bình hành

=>AF//CH và AF=CH

Xét ΔANB có

E là trung điểm của AB

EM//AN

Do đó: M là trung điểm của BN

=>BM=MN

Xét ΔDMC có

G là trung điểm của DC

GN//MC

Do đó: N là trung điểm của DM

=>DN=MN=MB=1/3DB

DN=1/3DB

DO=1/2DB

Do đó: \(\dfrac{DN}{DO}=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\)

Xét ΔADC có

DO là trung tuyến

DN=2/3DO

Do đó: N là trọng tâm

=>A,N,G thẳng hàng và C,N,H thẳng hàng

Xét ΔABC có

BO là trung tuyến

BM=2/3BO

Do đó: M là trọng tâm

=>A,M,F thẳng hàng và C,M,E thẳng hàng

Xét ΔEBM và ΔGDN có

EB=GD

\(\widehat{EBM}=\widehat{GDN}\)

BM=DN

Do đó: ΔEBM=ΔGDN

=>EM=GN

Xét tứ giác EMGN có

EM//GN

EM=GN

Do đó: EMGN là hình bình hành

b: Để EMGN là hình chữ nhật thì EG=NM

=>\(AD=\dfrac{BD}{3}\)

20 tháng 7 2021

Bài 1
a/ AB // DI 
Mà AM thuộc tia AB => AM // DI (1)
=> Tứ giác AIDM là hình thang
E là trung điểm của AD (gt) => ED = EA
Xét △EDI và △EAM có:
 - Góc DEI = Góc AEM (đối đỉnh)
 - ED = EA (cmt)
 - Góc EDI = Góc EAM (slt)
=> △EDI = △EAM (g.c.g)
=> AM = DI (2)
Từ (1) và (2). Vậy: Tứ giác AIDM là hình bình hành (đpcm)

b/ Chứng minh tương tự câu a

c/ Hình bình hành BICN có: BN = IC = CD/2 (I là trung điểm của CD)
 Hình bình hành AIDM có: MA = ID = CD/2 (I là trung điểm của CD)
=> BN = MA (3)
Mặt khác ta có: H là trung điểm của AB (gt) hay HA = HB (4)
Từ (3) và (4) suy ra: BN + HA = HB + MA 
Hay: HM = HN
Hay: H là trung điểm của MN (đpcm

Bài 2:  Đề sai nên không thể giải

20 tháng 7 2021

c.ơn nha

 

a: Xét tứ giác BEDF có 

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

Suy ra: BF//DE

hay EM//FN

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Suy ra: AF//CE

hay MF//EN

Xét tứ giác EMFN có 

EM//FN

EN//MF

Do đó: EMFN là hình bình hành

b: Ta có: AECF là hình bình hành

nên Hai đường chéo AC và EF cắt nhau tại trung điểm của mỗi đường(1)

Ta có: EMFN là hình bình hành

nên Hai đường chéo EF và MN cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,EF,MN đồng quy

28 tháng 9 2017

   có E,F,G,H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA 
suy ra EF là đường trung bình của tam giác ABC nên EF//=1/2AC (1) 
GH là đường trung bình của tam giác ADC nên GH//=1/2AC (2) 
Từ (1) và (2) suy ra EF//=GH nên EFGH là hình bình hành 
Vì có hai cạnh đối song song và bằng nhau 

Bài 2) 
a) AK=1/2AB; CI=1/2CD 
mà AB//=CD nên AK//=CI suy ra 
AKCI là hình bình hành 
do đó AI//CK 
b) Xét tam giác CDN 
có I là trung điểm CD mà IM//CN 
nên M là trung điểm DN hay DM=MN (3) 
(Theo định lý đường thẳng đi qua một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba) 
Tương tự xét tam giác ABM cũng có BN=MN (4) 
Từ (3) và (4) suy ra DM=MN=NB 

Bài 3) 
Câu a) làm ý như câu b) bài 2) 
bâu b) chứng minh giống ý a bài 2 ta được AECF là hình bình hành 
nên AF//CE => FM//EN (5) 
Tam giác ABM=tam giác CDN (cgc) suy ra AM=CN 
mà EN=1/2AM (t/c đường trung bình của tam giác) 
FM=1/2 NC (t/c đường trung bình của tam giác) 
do đó EN=MF (6) 
từ (5) và (6) suy ra EMFN là hình bình hành. 
câuc) I và J lần lượt là trung điểm của BC và AD 
nên IJ đi qua trung điểm của EF (7) 
MN và EF là hai đường chéo của hình bình hành ENFM nên MN đi qua trung điểm của EF (8) 
Từ (7) và (8) suy ra 3 đường thẳng IJ, MN, EF đồng quy tại 1 điểm 
Bạn hỏi dài quá. lần sau mỗi lần hỏi thì chỉ nên ghi 1 câu thôi, người trả lời đỡ ngại 
và bạn nhanh chóng có được đáp án. 
Chúc bạn học giỏi.