CMR :
5+52+53+...+559+560
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{57}+5^{58}+5^{59}\right)\\ A=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\\ A=\left(1+5+5^2\right)\left(1+5^3+...+5^{57}\right)\\ A=31\left(1+5^3+...+5^{57}\right)⋮31\\ b,5A=5+5^2+5^3+...+5^{60}\\ \Rightarrow5A-A=4A=5^{60}-1\\ \Rightarrow A=\dfrac{5^{60}-1}{4}=\dfrac{5^{60}}{4}-\dfrac{1}{4}< \dfrac{5^{60}}{4}=B\)
a. A = 1 + 5 + 52 + 53 + .... + 559
A = ( 1 + 5 + 52) + (53 + 54 + 55) +.....+ (557 + 558 + 559)
A = (1 + 5 + 52) + 53(1 + 5 + 52) + ..... + 557( 1 + 5 + 52)
A = (1 + 5 + 52)( 1 + 53 +......+ 557)
A = 31(1 + 53+.....+ 557)
Vì có một thừa số 31 nên A ⋮ 31
a: \(A=\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)
\(=31\left(1+...+5^{57}\right)⋮31\)
Lời giải:
a.
$A=1+5+5^2+5^3+...+5^{59}$
$= (1+5+5^2)+(5^3+5^4+5^5)+....+(5^{57}+5^{58}+5^{59})$
$=(1+5+5^2)+5^3(1+5+5^2)+....+5^{57}(1+5+5^2)$
$=31+5^3,31+,,,,,+5^{57}.31$
$=31(1+5^3+...+5^{57})\vdots 31$ (đpcm)
b.
$A=1+5+5^2+...+5^{59}$
$5A=5+5^2+5^3+...+5^{60}$
$\Rightarrow 4A=5A-A=5^{60}-1< 5^{60}$
$\Rightarrow A< \frac{5^{60}}{4}=B$
F = 7 + 72 + 73 + 74 + ..... + 7100
F= 7+(1+7)+73+(1+7)+...+799+(1+7)
F = 7x8+73x8+...+799x8
F= 8x(7+73+...+799)
mà 8 chia hết 8 => 8(7+73+...+799) chia hết 8
Vậy F chia hết cho 8
Bài 1:
a: \(S=1-5+5^2-5^3+...+5^{98}-5^{99}\)
=>\(5S=5-5^2+5^3-5^4+...+5^{99}-5^{100}\)
=>\(6S=5-5^2+5^3-5^4+...+5^{99}-5^{100}+1-5+5^2-5^3+...+5^{98}-5^{99}\)
=>\(6S=-5^{100}+1\)
=>\(S=\dfrac{-5^{100}+1}{6}\)
b: S=1-5+52-53+...+598-599 là số nguyên
=>\(\dfrac{-5^{100}+1}{6}\in Z\)
=>\(-5^{100}+1⋮6\)
=>\(5^{100}-1⋮6\)
=>\(5^{100}\) chia 6 dư 1
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
Đặt C=1.3.5.7...99
Đặt D=51/2.52/2.53/2 ....100/2
Ta có:C=1.3.5.7...99
=>2.4.6...100.C=1.2.3...100
=>C = (1.2.3....100) / (2.4.6...100)= (1.2.3...50).(51.52...100) / [(2.1)(2.2).(2.3)...(2.50)]
C=(1.2.3...50).(51.52...100) /[2^50.(1.2.3...50)] =(51.52...100)/2^50 =51/2.52/2.53/2...100/2 =D
Vậy C=D
Ta có :
\(1.3.5.....99=\frac{\left(1.3.5.....99\right)\left(2.4.6.....98\right)}{2.4.6.....98}=\frac{1.2.3.....99.100}{2^{50}\left(1.2.3.....50\right)}=\frac{51.52.53.....100}{2.2.2.....2}\)
\(=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}\)
Vậy......................
~ Hok tốt ~
Sửa đề: \(\dfrac{\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)
\(=\dfrac{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)
=1
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
Lời giải:
Ta thấy, mỗi số hạng trong $b$ đều lớn hơn $1$ (do tử số lớn hơn mẫu số)
Do đó $b>1$
Ta có đpcm.
Giải:
B=2021/52+2021/52+2021/53+...+2021/100
Nhận xét: Ta thấy các số hạng ở dãy B đều > 1
2021/51 > 1
2021/52 > 1
2021/53 > 1
...
2021/100 > 1
=>B > 1
Vậy B>1
Chúc bạn học tốt!
dễ ẹc :
5+52+53+...+559+560
=(5+54)+(52+55)+(53+56)+...+(557+560)
=5+(1+53)+52+(1+53)+...+557+(1+53)
= 126 .(5+52+...+557) chia hết cho 126
(đ.p.c.m)
chia hết chô 126