Cho a/b=c/d.Chứng minh
a+c/b+d=a-c/b-d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tính chất dãy tỉ
a/b = b/c = c/d = a+b+c/b+c+d
=> (a+b+c/b+c+d)3=(a+b+c/b+c+d)+(a+b+c/b+c+d)+(a+b+c/b+c+d)
=> (a+b+c/b+c+d)3=a/b.b/c.c/d
=> (a+b+c/b+c+d)3= a/d (đpcm)
Ta có tính chất dãy tỉ
a/b = b/c = c/d = a+b+c/b+c+d
=> (a+b+c/b+c+d)3=(a+b+c/b+c+d)+(a+b+c/b+c+d)+(a+b+c/b+c+d)
=> (a+b+c/b+c+d)3=a/b.b/c.c/d
=> (a+b+c/b+c+d)3= a/d (đpcm)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\Rightarrow\dfrac{a+b+c}{b+c+d}\times\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}=\dfrac{a}{d}\)
=> điều phải chứng minh
ghi lai de
Áp dụng t/c dãy tỉ :
a/b = b/c = c/d = (a + b + c)/(b + c + d).
Suy ra : (a/b)^3 = (a+b+c/b+c+d)^3
Vậy (a+b+c/B+c+d)^3 = (a/b)^3 = (a/b).(a/b).a/b) = (a/b).(b/c).(c/d) = a/d (vi dc rút gọn )
Ta có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow a.d=b.c\Rightarrow a.\left(b+d\right)=b.\left(a+c\right)\Rightarrow a.b+a.d=b.a+b.c\)( vì 2 tích bằng nhau thêm 2 tích cùng 1 số giống thì tích đó không thay đổi)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)
Ta thấy : b/a = d/c ⇒ad = bc (1)
Ta có: (a+2c)(b+d)=(a+c)(b+ad)
<=> ab+ad+2bc+2cd=ab+2ad+bc+2cd
<=> ab+ad+2bc+2cd-ab-2ad-bc-2cd=0
<=>-ad+bc=0<=>bc-ad=0<=>ad=bc=>(1) luôn đúng
=>ĐFCM
Theo dãy tỉ số bằng nhau
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
=> ĐPCM
Theo dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{a+c}{b+d}\)=\(\frac{a-c}{b-d}\)
=>ĐPCM