K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3\)

\(\Rightarrow\dfrac{a+b+c}{b+c+d}\times\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}=\dfrac{a}{d}\)

=> điều phải chứng minh

15 tháng 10 2018

cảm ơn bạn nha

15 tháng 3 2016

Ta có tính chất dãy tỉ 

a/b = b/c = c/d = a+b+c/b+c+d

=> (a+b+c/b+c+d)3=(a+b+c/b+c+d)+(a+b+c/b+c+d)+(a+b+c/b+c+d)

=>  (a+b+c/b+c+d)3=a/b.b/c.c/d

=>  (a+b+c/b+c+d)3= a/d (đpcm)

15 tháng 3 2016

Ta có tính chất dãy tỉ 

a/b = b/c = c/d = a+b+c/b+c+d

=> (a+b+c/b+c+d)3=(a+b+c/b+c+d)+(a+b+c/b+c+d)+(a+b+c/b+c+d)

=>  (a+b+c/b+c+d)3=a/b.b/c.c/d

=>  (a+b+c/b+c+d)3= a/d (đpcm)

21 tháng 7 2015

ghi lai de

Áp dụng t/c dãy tỉ :

a/b = b/c = c/d = (a + b + c)/(b + c + d).

Suy ra :  (a/b)^3 = (a+b+c/b+c+d)^3  

Vậy (a+b+c/B+c+d)^3 = (a/b)^3 = (a/b).(a/b).a/b) = (a/b).(b/c).(c/d) = a/d (vi dc  rút gọn ) 

26 tháng 9 2016

hay đó

mik đa tạ!hì hì

(tui cũng đang cần mà)

8 tháng 11 2017

Đặt đk đầu của đề bài bằng k rồi rút a, b,c và thay vào VT, VP.

9 tháng 11 2017

mình chưa hiểu ý của bạn lắm Hoàng Thị Ngọc Anh

5 tháng 2 2021

Ta thấy : b/a = d/c ⇒ad = bc (1)

Ta có: (a+2c)(b+d)=(a+c)(b+ad)

<=> ab+ad+2bc+2cd=ab+2ad+bc+2cd

<=> ab+ad+2bc+2cd-ab-2ad-bc-2cd=0

<=>-ad+bc=0<=>bc-ad=0<=>ad=bc=>(1) luôn đúng

=>ĐFCM

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)( 1 )

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a-b}{c-d}=\frac{a+b}{c+d}\left(đpcm\right)\)

với \(\hept{\begin{cases}a\ne b\\c\ne d\end{cases}}\)

14 tháng 4 2017

đặt a/b=c/d=k
suy ra a=bk;c=dk
suy ra a-b/a+b=bk-b/bk+b=b(k-1)/b(k+1)=k-1/k+1              (1)
c-d/c+d=dk-d/dk+d=d(k-1)/d(k+1)=k-1/k+1                        (2)
từ 1 và 2 suy ra dpcm

29 tháng 12 2016

Câu 1:

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

=>\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}\)

=>\(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)(đpcm)

29 tháng 12 2016

Câu 2:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)

+)\(a+b+c=0\)

=> \(a=-\left(b+c\right);b=-\left(c+a\right);c=-\left(a+b\right)\)

=>\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=-1\)

+)\(a+b+c\ne0\)

Áp dụng tính chất của dãy tỉ số bằng nhau: 

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Vậy ......................

Câu 3:

Thiếu đề rồi !?

8 tháng 11 2019

\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}.\)

\(\Rightarrow\frac{ac}{a^2+c^2}=\frac{bd}{b^2+d^2}\left(đpcm\right).\)

Chúc bạn học tốt!