tính A = (1-1/4)*(1-1/9)*(1-1/16)*(1-1/16)*...(1-1/10000)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}=\frac{1\cdot3}{2.2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99\cdot101}{100\cdot100}=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)
B = ( 1- 1/4 )( 1-1/9) ...( 1-1/10000 ) = 3/4 . 8/9 .....9999/100000 ( tương tự A )
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
\(=\frac{1.2.3....99}{2.3.4....100}.\frac{3.4.5....101}{2.3.4...100}\)
\(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).....\left(1-\frac{1}{10000}\right)\)
\(=\frac{3}{4}.\frac{8}{9}....\frac{9999}{10000}=\frac{101}{200}\)
A=1/(2x2)+1/(3x3)+...+1/(100x100)
Nhận thấy rằng n x n -1=n x n -n+n-1=n x (n-1)+n-1=(n-1) x (n+1)
=> A < 1/(2x2-1)+1/(3x3-1)+...+1/(100x100-1)=1/(1x3)+1/(3x5)+...+1/(99x101)=1/2-1/202<1/2<3/4
A=1/(2x2)+1/(3x3)+...+1/(100x100) Nhận thấy rằng n x n -1=n x n -n+n-1=n x (n-1)+n-1=(n-1) x (n+1) => A < 1/(2x2-1)+1/(3x3-1)+...+1/(100x100-1)=1/(1x3)+1/(3x5)+...+1/(99x101)=1/2-1/202<1/2<3/4
A=\(\dfrac{3}{4}.\dfrac{8}{9}.....\dfrac{9999}{10000}\)
A=\(\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.....\dfrac{99.101}{100.100}\)
A=\(\dfrac{1.2.3.....99}{2.3.4.....100}.\dfrac{3.4.....101}{2.3.4.....100}\)
A=\(\dfrac{1}{100}.\dfrac{101}{2}\)
A=\(\dfrac{101}{200}\)
\(A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{99.101}{100.100}\\ =\dfrac{1}{2}.\dfrac{101}{100}=\dfrac{101}{200}\)
\(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)...\left(1-\dfrac{1}{10000}\right)\\ =\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)
(làm như câu a)
đáp số cuối cùng là 0 vì 1-1/4 = 0/4 = 0 x cho những số nào khác cũng bằng 0 thôi
\(\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{9}\right)\times\left(1-\frac{1}{16}\right)\times...\times\left(1-\frac{1}{10000}\right)\)
\(=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times...\times\frac{999}{10000}\)
\(=\frac{1\times3}{2\times2}\times\frac{2\times4}{3\times3}\times\frac{3\times5}{4\times4}\times...\times\frac{99\times101}{100\times100}\)
\(=\frac{1}{2}\times\frac{101}{100}\)
\(=\frac{101}{200}\)
Ta có: \(1-\frac{1}{4}=\frac{3}{4}=\frac{1}{2}.\frac{3}{2}\); \(1-\frac{1}{9}=\frac{8}{9}=\frac{2}{3}.\frac{4}{3}\); \(1-\frac{1}{16}=\frac{15}{16}=\frac{3}{4}.\frac{5}{4}\);
...; \(1-\frac{1}{10000}=\frac{9999}{10000}=\frac{99}{100}.\frac{101}{100}\)
=> \(A=\frac{1}{2}.\frac{3}{2}.\frac{2}{3}.\frac{4}{3}.\frac{3}{4}.\frac{5}{4}....\frac{99}{100}.\frac{101}{100}\). Nhận thấy; Tích của 2 số liền kề thì bằng 1
=> \(A=\frac{1}{2}.\frac{101}{100}=\frac{101}{200}\)
Đáp số: \(A=\frac{101}{200}\)