K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2015

A = \(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}=\frac{1\cdot3}{2.2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99\cdot101}{100\cdot100}=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)

B = ( 1- 1/4 )( 1-1/9) ...( 1-1/10000 ) = 3/4 . 8/9 .....9999/100000 ( tương tự A )

 

19 tháng 4 2016

a=5051/100 co ma

24 tháng 7 2021

A=\(\dfrac{3}{4}.\dfrac{8}{9}.....\dfrac{9999}{10000}\)

A=\(\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.....\dfrac{99.101}{100.100}\)

A=\(\dfrac{1.2.3.....99}{2.3.4.....100}.\dfrac{3.4.....101}{2.3.4.....100}\)

A=\(\dfrac{1}{100}.\dfrac{101}{2}\)

A=\(\dfrac{101}{200}\)

 

\(A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{99.101}{100.100}\\ =\dfrac{1}{2}.\dfrac{101}{100}=\dfrac{101}{200}\)

\(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)...\left(1-\dfrac{1}{10000}\right)\\ =\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)

(làm như câu a)

14 tháng 3 2017

\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)

\(=\frac{1.2.3....99}{2.3.4....100}.\frac{3.4.5....101}{2.3.4...100}\)

\(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)

\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).....\left(1-\frac{1}{10000}\right)\)

\(=\frac{3}{4}.\frac{8}{9}....\frac{9999}{10000}=\frac{101}{200}\)

AH
Akai Haruma
Giáo viên
14 tháng 9

Lời giải:
\(A=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}....\frac{-998}{999}.\frac{-999}{1000}\\ =\frac{(-1)(-2)(-3)...(-998)(-999)}{2.3.4....1000}\\ =-\frac{1.2.3.4....998.999}{2.3.4...1000}\\ =-\frac{1}{1000}\)

AH
Akai Haruma
Giáo viên
14 tháng 9

Trong $B$ có một thừa số là $1-\frac{7}{7}=0$ nên $B=0$ (do số nào nhân với $0$ cũng sẽ bằng $0$.

----------------------

$C=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{49.51}{50^2}$

$=\frac{1.3.2.4.3.5.....49.51}{2^2.3^2.4^2....50^2}$

$=\frac{(1.2.3...49)(3.4.5...51)}{(2.3.4...50)(2.3.4...50)}$
$=\frac{1.2.3...49}{2.3.4...50}.\frac{3.4.5...51}{2.3.4....50}$

$=\frac{1}{50}.\frac{51}{2}=\frac{51}{100}$

23 tháng 3 2018

mình làm được nhưng đánh lâu lắm

26 tháng 3 2017

Mày hay nhờ mai tao méc thầy

26 tháng 3 2017

tự làm đihaha

26 tháng 3 2017

\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{624}{625}\)

\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{24.26}{25.25}\)

\(=\frac{1.2.3....24}{2.3.4....25}\cdot\frac{3.4.5....26}{2.3.4....25}\)

\(=\frac{1}{25}\cdot\frac{26}{2}=\frac{26}{50}=\frac{13}{25}\)

\(\left(1+\frac{1}{3}\right)\cdot\left(1+\frac{1}{8}\right)\cdot\left(1+\frac{1}{15}\right)\cdot\cdot\cdot\cdot\left(1+\frac{1}{9999}\right)\)

\(=\frac{4}{3}\cdot\frac{9}{8}\cdot\frac{16}{15}\cdot\cdot\cdot\cdot\frac{10000}{9999}\)

\(=\frac{2.2}{1.3}\cdot\frac{3.3}{2.4}\cdot\frac{4.4}{3.5}\cdot\cdot\cdot\cdot\frac{100.100}{99.101}\)

\(=\frac{2.3.4...100}{1.2.3...99}\cdot\frac{2.3.4...100}{3.4.5...101}\)

\(=\frac{100}{1}\cdot\frac{2}{101}=\frac{200}{101}\)