Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{999}{1000}=\frac{1.2.3...999}{2.3.4...1000}=\frac{1}{1000}\)
\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{2499}{2500}=\frac{3.8.15...2499}{4.9.16....2500}=\frac{1.3.2.4.3.5....49.51}{2.2.3.3.4.4...50.50}=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)
\(\frac{1.51}{50.2}=\frac{51}{100}\)
a. \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{999}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{998}{999}\)
\(A=\frac{1\cdot2\cdot3\cdot....\cdot998}{2\cdot3\cdot4\cdot....\cdot999}=\frac{1}{999}\)
Vậy \(A=\frac{1}{999}\)
A = \(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}=\frac{1\cdot3}{2.2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99\cdot101}{100\cdot100}=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)
B = ( 1- 1/4 )( 1-1/9) ...( 1-1/10000 ) = 3/4 . 8/9 .....9999/100000 ( tương tự A )
a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)
b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)
Ta có: D\(=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2005}\right)\)
\(\Leftrightarrow D=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2004}{2005}=\dfrac{1.2.3...2004}{2.3.4...2005}=\dfrac{1}{2005}\)
Ta có: \(E=\dfrac{1^2}{1.3}.\dfrac{2^2}{2.4}.\dfrac{3^2}{3.5}...\dfrac{999^2}{999.1000}.\dfrac{1000^2}{1000.1001}=\dfrac{\left(1.2.3.4...1000\right)\left(1.2.3.4...1000\right)}{\left(1.2.3....1000\right)\left(3.4.5....1001\right)}=\dfrac{2}{1001}\)
thôi chịu nhiều quá ai mà làm đc tự đi mà làm hỏi thì hỏi thì hỏi ít thôi người ta còn trả lời đc .
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
\(=\frac{1.2.3....99}{2.3.4....100}.\frac{3.4.5....101}{2.3.4...100}\)
\(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).....\left(1-\frac{1}{10000}\right)\)
\(=\frac{3}{4}.\frac{8}{9}....\frac{9999}{10000}=\frac{101}{200}\)
Lời giải:
\(A=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}....\frac{-998}{999}.\frac{-999}{1000}\\ =\frac{(-1)(-2)(-3)...(-998)(-999)}{2.3.4....1000}\\ =-\frac{1.2.3.4....998.999}{2.3.4...1000}\\ =-\frac{1}{1000}\)
Trong $B$ có một thừa số là $1-\frac{7}{7}=0$ nên $B=0$ (do số nào nhân với $0$ cũng sẽ bằng $0$.
----------------------
$C=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{49.51}{50^2}$
$=\frac{1.3.2.4.3.5.....49.51}{2^2.3^2.4^2....50^2}$
$=\frac{(1.2.3...49)(3.4.5...51)}{(2.3.4...50)(2.3.4...50)}$
$=\frac{1.2.3...49}{2.3.4...50}.\frac{3.4.5...51}{2.3.4....50}$
$=\frac{1}{50}.\frac{51}{2}=\frac{51}{100}$