\(x^{100}y^{100}+x^{99}y^{99}+x^{98}y^{98}+...+x^2y^2+xy+1\) 1 tại x = -1: y = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,+) Thay x = 5 vào biểu thức A, ta có:
A = 4.52 - 5.|5| + 2.|3 - 5|
A = 4.25 - 5.5 + 2.2
A = 100 - 25 + 4
A = 75 + 4 = 79
Thay x = 3 vào biểu thức A, ta có:
A = 4.32 - 5.|3| + 2.|3 - 3|
A = 4.9 - 5.3 + 2.0
A = 36 - 15 = 21
+) Ta có: B = xy + x2y2 + x3y3 + ... + x100y100
B = xy + (xy)2 + (xy)3 + ... + (xy)100
Thay x = 1; y= -1 vào biểu thức B, ta có:
B = 1.(-1) + [1.(-1)]2 + [1.(-1)]3 + ... + [1.(-1)]100
B = -1 + 1 - 1 + ... + 1
B = 0
+) Thay x = 1 vào C, ta có:
C = 100.1100 + 99.199 + 98.198 + ... + 2.12 + 1
C = 100 + 99 + 98 + ... + 2 + 1
C = (100 + 1).[(100 - 1) : 1 + 1] : 2
C = 101.100 : 2
C = 5050
+) Thay x = 99 vào biểu thức D, ta có:
D = 9999 - 100.9998 + 100.9997 - 100.9996 + ... + 100.99 - 1
D = 9999 - (99 + 1).9998 + (99 + 1).9997 - (99 + 1).9996 + ... + (99 + 1).99 - 1
D = 9999 - 9999 - 9998 + 9998 + 9997 - 9997 - 9996 + ... + 992 + 99 - 1
D = 99 - 1 = 98
Lời giải:
Với $x=-1\Rightarrow x+1=0$. Do đó:
$A=(x^{2014}+x^{2013})+(x^{2012}+x^{2011})+...+(x^2+x)+1$
$=x^{2013}(x+1)+x^{2011}(x+1)+...+x(x+1)+1$
$=x^{2013}.0+x^{2011}.0+...+x.0+1=1$
----------------
\(x=-1; y=1\Rightarrow xy+1=0\)
\(B=(x^{100}y^{100}+x^{99}y^{99})+...+(x^2y^2+xy)+1\)
\(=x^{99}y^{99}(xy+1)+...+xy(xy+1)+1\)
\(=x^{99}y^{99}.0+....+xy.0+1=1\)
a: \(=\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)
=0
b: \(=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+...+\left(1-1\right)\)
=0
c: \(=1^{100}-1^{99}+1^{98}-1^{97}+...+1^2-1\)
=0
f: \(=3\cdot\sqrt{9-5}+7=3\cdot2+7=13\)
1) Đặt A = 1 + 3 + 32 + .... + 398 + 399
=> 3A = 3 + 32 + .... + 398 + 3100
=> 3A - A = 3100 - 1
=> 2A = 3100 - 1
=> \(A=\frac{3^{100}-1}{2}\)
Nên : 3100 - (1 + 3 + 32 + .... + 398 + 399)
= 3100 - \(\frac{3^{100}-1}{2}\)
= \(\frac{3^{100}.2}{2}-\frac{3^{100}-1}{2}\)
= \(\frac{3^{100}.2-3^{100}+1}{2}\)
= \(\frac{3^{100}+1}{2}\)
Khi Nhân 99/ 100 với một số ta được kết quả bằng 100 .
Vậy phép nhân đó là:.......….…
Giảinhanh giúp mình với
a) \(A=y^2+2y+1\)
\(A=\left(y+1\right)^2\)
Thay y = 99 vào A ta có :
\(A=\left(99+1\right)^2\)
\(A=100^2=10000\)
b) \(B=x^2-6x+9\)
\(B=x^2-2\cdot x\cdot3+3^2\)
\(B=\left(x-3\right)^2\)
Thay x = 103 vào B ta có :
\(B=\left(103-3\right)^2\)
\(B=100^2=10000\)
c) \(C=x^2+4x+4\)
\(C=x^2+2\cdot x\cdot2+2^2\)
\(C=\left(x+2\right)^2\)
Thay x = 98 vào C ta có :
\(C=\left(98+2\right)^2\)
\(C=100^2=10000\)
d) \(D=y^2-2xy+x^2\)
\(D=\left(y-x\right)^2\)
Thay y = 109, x = 9 vào D ta có :
\(D=\left(109-9\right)^2\)
\(D=100^2=10000\)
a) x ^ 2 + 2x + 1 = ( x + 1 ) ^ 2 = ( 99 + 1 ) ^ 2 = 100 ^ 2 = 10000
b) x ^ 2 - 6x + 9 = ( x - 3 ) ^ 2 = ( 103 - 3 ) ^ 2 = 100 ^ 2 = 10000
c) x ^ 2 + 4x + 4 = ( x + 2 ) ^ 2 = ( 98 + 2 ) ^ 2 = 100 ^ 2 = 10000
d) y ^ 2 - 2xy + x ^ 2 = ( y - x ) ^ 2 = ( 109 - 9 ) ^ 2 = 100 ^ 2 = 10000
Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:
ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\) nên phương trình 1 vô lý
tương tự chứng minh phương trinh 2 và 3 vô lý
vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)
thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm
\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)
Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)
Ta dễ dàng nhận thấy tất cả số mũ đều chẵn
\(=>A\ge0\)(1)
Đặt : \(B=-\left(y+z+x\right)\)
\(=>B\le0\)(2)
Từ 1 và 2 \(=>A\ge0\le B\)
Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)
Do \(B=0< =>y+z+x=0\)(3)
\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)
Từ 3 và 4 \(=>x=y=z=0\)
Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}
THAY X= -1; Y= 1 VÀO BIỂU THỨC
CÓ: \(\left(-1\right)^{100}.1^{100}+\left(-1\right)^{99}.1^{99}+\left(-1\right)^{98}.1^{98}+\left(-1\right)^2.1^2+\left(-1\right).1+1\)
\(=1+\left(-1\right)+1+...+1+\left(-1\right)+1\)
( gạch bỏ các cặp số 1+ (-1) )
\(=0+1\)
\(=0\)
KL: \(x^{100}y^{100}+x^{99}y^{99}+x^{98}y^{98}+...+x^2y^2+1=1\)TẠI X = -1; Y =1
CHÚC BN HỌC TỐT!!