K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

1) Đặt A = 1 + 3 + 32 + .... + 398 + 399

=> 3A = 3 + 32 + .... + 398 + 3100 

=> 3A - A = 3100 - 1

=> 2A = 3100 - 1

=> \(A=\frac{3^{100}-1}{2}\)

Nên : 3100  - (1 + 3 + 32 + .... + 398 + 399)

= 3100 - \(\frac{3^{100}-1}{2}\)

\(\frac{3^{100}.2}{2}-\frac{3^{100}-1}{2}\)

\(\frac{3^{100}.2-3^{100}+1}{2}\)

\(\frac{3^{100}+1}{2}\)

26 tháng 12 2017

1.

\(B=1+3^1+....+3^{99}\\ \Rightarrow3.B=3+3^2+...+3^{100}\\ \Rightarrow2B=3^{100}-1\\ \Rightarrow B=\dfrac{3^{100}-1}{2}\)

\(\Rightarrow A=3^{100}-B=3^{100}-\dfrac{3^{100}-1}{2}\)

3.

a;b là số nguyên tố lớn hơn 3

=> a;b không chia hết cho 3 và a;b lẻ

a;b không chia hết cho 3 => a^2 ; b^2 chia 3 dư 1

=> A chia hết 3

TT : A chia hết 8

(3;8)=1 => A chia hết 24

26 tháng 12 2017

bạn làm câu 3 rõ hơn được không?

22 tháng 8 2023

1) \(3^x+3^{x+1}+3^{x+2}=351\)

\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)

\(\Rightarrow3^x.13=351\)

\(\Rightarrow3^x=27\)

\(\Rightarrow3^x=3^3\)

\(\Rightarrow x=3\)

2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(\Rightarrow C=30+2^4.30...+2^{96}.30\)

\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)

mà \(30=5.6\)

\(\Rightarrow C⋮5\left(dpcm\right)\)

22 tháng 8 2023

1,

Có \(3^x\)\(3^{x+1}\) + \(3^{x+2}\) = \(351\)

=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)

=> \(3^x\).\(13\) = \(351\)

=> \(3^x\) = \(27\)

=> \(x\) = \(3\)

2,

C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)

2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)

2C - C = \(2^{101}\) - \(2\)

C = \(2^{101}\) - \(2\)

C = \(2\).\(\left(2^{100}-1\right)\)

C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)

Có \(2^5\) \(-1\) \(⋮\) 5

=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5

=> C \(⋮\) 5

3,

Xét \(\overline{abcdeg}\)

\(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)

\(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)

\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)

=> \(\overline{abcdeg}⋮9\)

4,

S = \(3^0+3^2+3^4+...+3^{2002}\)

9S = \(3^2+3^4+3^6+...+3^{2004}\)

9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))

8S = \(3^{2004}-1\)

=> 8S \(< 3^{2004}\)

16 tháng 3 2020

b1

ta có : n+4 = (n+1)+3

=>n+1+3 chia hết cho n+1

vì n+1 chia hết cho n+1

=>3 chia hết cho n+1

=> n+1 chia hết cho 3

=> n+1 thuộc Ư 3 =[1;3]

=> n+1=1                   n+1=3

     n    =1-1                n    =3-1

     n    =0                   n    =2

vậy n thuộc [0;2]

22 tháng 10 2021

S=1-3+3\(^2\)-....+3\(^{98}\)-3\(^{99}\)(1)

\(\Rightarrow\)3S=3-3\(^2\)+3\(^3\)+...+3\(^{99}\)-3\(^{100}\)(2)

Từ(1)và(2)\(\Rightarrow\)4S=1-3\(^{100}\)

Do S chia hết cho -20\(\Rightarrow\)4S chia hết cho -20

\(\Rightarrow\)4S chia hết cho 4\(\Rightarrow\)1-3\(^{100}\)chia hết cho 4

\(\Rightarrow\)3\(^{100}\)chia hết 4 dư 1

17 tháng 10

a; Tổng của ba số tự nhiên liên tiếp có dạng:

  n; n + 1; n + 2

Tổng của ba số tự nhiên liên tiếp có là:

n  + n + 1 + n  +2 = 3n + 3 = 3.(n+  1) ⋮ 3(đpcm)