Tìm 2 số lẻ liên tiếp sao cho: \(\frac{1}{a}-\frac{1}{b}=\frac{2}{195}\)
Trả lời:(a;b)=(....;....)
(Nhập a,b lần lượt theo thứ tự ngăn cách nhau bởi dấu '';``
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có : 1/a - 1/b = 2/195 (1)
Lại có : a và b là 2 số tự nhiên liên tiếp và a < b
=> b = a + 2 (2)
Thay (2) vào 1 ta có :
\(\frac{1}{a}-\frac{1}{a+2}=\frac{a+2-a}{a\times\left(a+2\right)}=\frac{2}{a\times\left(a+2\right)}\)
Vì 2 = 2
=> \(a\times\left(a+2\right)=195\)
=> \(a\times\left(a+2\right)=13\times15\)
=> \(a=13\)và \(a+2=15\)(3)
Lại có a + 2 = b
=> b = 15
Vậy a = 13 ; b = 15
Giải
\(\frac{1}{a}-\frac{1}{b}=\frac{2}{195}\)
\(\frac{1}{a}-\frac{1}{b}=\frac{\:b-a}{a×b}=\frac{2}{195}\)
Ta có:\(\)b - a = 2
b × a = 195
Nếu đoán mò thì chỉ có số A = 13
và B = 15
Vì 13, 15 là hai số lẻ liên tiếp nhân nhau bằng 195.
\(\frac{1}{a}-\frac{1}{b}=\frac{2}{99}>0\) => \(\frac{1}{a}>\frac{1}{b}\) => a < b . Mà a; b là 2 số lẻ liên tiếp nên b - a = 2
Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{2}{99}\)
\(\frac{b-a}{a\times b}=\frac{2}{99}\)
\(\frac{2}{a\times b}=\frac{2}{99}\)
=> b x a = 99 = 11 x 9
Vậy b =11; a = 9
1/a+1/b=2/99.
Mà 2/99=2/(9*11).
Theo tính chất :a/n*(n+a)=1/n-1/(n+a).
2/(9*11)=1/9-1/11.
Mà a và b là 2 stn liên tiếp.
=>a=9;b=11.
Vậy a=9;b=11.
Ta có 2 số lẻ liên tiếp a-b=2 ( 1 ) Mà \(\frac{1}{a}-\frac{1}{b}=\frac{2}{99}\) \(\Rightarrow\frac{b}{ab}-\frac{a}{ab}=\frac{2}{99}\) \(\Rightarrow\frac{b-a}{ab}=\frac{2}{99}\) (2) Thay (1) và (2) ta có \(\frac{2}{ab}=\frac{2}{99}\Rightarrow a\cdot b=99=9\cdot11=3.33=1.99\) Vì a và b là 2 số lẻ liên tiếp suy ra a=9;b=11
Theo đề bài, ta có:
\(\frac{1}{a}-\frac{1}{b}=\frac{2}{195}\) (1)
Lại có: a và b là hai số tự nhiên liên tiếp và a < b
\(\Rightarrow b=a+2\) (2)
Thay (2) vào (1) ta có:
\(\frac{1}{a}-\frac{1}{a+2}=\frac{a+2-a}{a.\left(a+2\right)}=\frac{2}{a.\left(a+2\right)}\)
Vì 2 = 2
\(\Rightarrow a.\left(a+2\right)=195\)
\(\Rightarrow a.\left(a+2\right)=13.15\)
\(\Rightarrow a=13\)và \(a+2=15\) (3)
Lại có: \(a+2=b\)
\(\Rightarrow b=15\)
Vậy \(a=13;b=15\)
1) \(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=0+\frac{1}{16}\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}=\left(\frac{1}{4}\right)^2\)
\(\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)
\(\frac{1}{x}=\frac{1}{4}+\frac{2}{3}=\frac{3}{12}+\frac{8}{12}\)
\(\frac{1}{x}=\frac{11}{12}\)=> x*11=1*12
=> x=12/11
x=1,090 909 091 . Vậy x=1,090 909 091
mình không chắc nữa
chúc bạn học tốt!^_^
b = (2m + 1)^2 = 4m^2 + 4m + 1
=> A = (a - 1)(b - 1) = 4m(m -1).4m(m +1)
m(m -1) và m(m+1) đều chia hết cho 2 => A chia hết cho 4.2.4.2 = 64
vì: A chứa m(m-1)(m+1) là tích 3 số nguyên liên tiếp chia hết cho 3
3 và 64 nguyên tố cùng nhau => A chia hết cho 64.3 = 192
Vid a,b là 2 số lẻ liên tiếp => b= a+2
Ta có : \(\frac{1}{a}-\frac{1}{b}=\frac{2}{99}\)
=> \(\frac{1}{a}+\frac{1}{a+2}=\frac{2}{99}\)
=> \(\frac{2}{a\left(a+2\right)}=\frac{2}{99}\)
=> \(a\left(a+2\right)=99\)
Mà a và a+2 là 2 số lẻ liên tiếp và 99 phân tích thành 2 số lẻ liên tiếp chỉ có 9 x 11
=> a=9
Khi đó b=11
Trả lời: (a;b)=(65;195)
(13; 15)