.Tìm x , biết : a, x + 2 căn x = 0 ; b, 5x= 10 căn x ; 2. Cmr : a, căn 50 - căn 17 > 11 ; b, căn 6 + căn 12 + căn 30 +căn 56 < 19 ; 5. So sánh a, căn 26 + căn 17 và 9 ; b, căn 6 - căn 5 và 1 ; 6. Cho B = căn x +1 tất cả phần căn x - 2 .Tìm x để B nhận giá trị nguyên .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
\(R=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{3x-5\sqrt{x}}{4-x}\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}-1\right)\left(ĐK:x\ge0,x\ne4\right)\\ =\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3x-5\sqrt{x}}{\sqrt{x}^2-2^2}\right):\dfrac{2\sqrt{x}-1-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+3x-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-2}{2\sqrt{x}-1-\sqrt{x}+2}\\ =\dfrac{3x-6\sqrt{x}+x+2\sqrt{x}+3x-5\sqrt{x}}{\sqrt{x}+2}.\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{7x-9\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)
Bạn xem lại đề nhé, rút gọn thường ra kết quả rất đẹp chứ không dài như kết quả này đâu ạ.
cậu cho mk xin link facebook của jonathan galindo đi rồi mk sẽ trả lời câu hỏi của cậu
Ta có : \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\frac{8-2\sqrt{15}}{2}=4-\sqrt{15}\)
Thay \(x=4-\sqrt{15}\) vào pt được :
\(\left(4-\sqrt{15}\right)^2.a+\left(4-\sqrt{15}\right)b+1=0\Leftrightarrow\left(31-8\sqrt{15}\right)a+\left(4-\sqrt{15}\right)b+1=0\)
\(\Leftrightarrow\sqrt{15}\left(-8a-b\right)+\left(31a+4b+1\right)=0\)
Vì a,b là số hữu tỉ nên ta có : \(\begin{cases}8a+b=0\\31a+4b=-1\end{cases}\) \(\Leftrightarrow\begin{cases}a=1\\b=-8\end{cases}\)
Ta có:\(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{5-3}=\frac{8-2\sqrt{15}}{2}=4-\sqrt{15}\)
Thay vào ta có:
\(a\cdot\left(4-\sqrt{15}\right)^2+b\cdot\left(4-\sqrt{15}\right)+1=0\)
\(\Leftrightarrow a\cdot\left(31-8\cdot\sqrt{15}\right)+4b-b\cdot\sqrt{15}+1=0\)
\(\Leftrightarrow\left(31a+4b+1\right)-\left(8a+b\right)\cdot\sqrt{15}=0\)
Do a,b hữu tỉ \(\Rightarrow\begin{cases}31a+4b+1=0\\8a+b=0\end{cases}\)\(\Leftrightarrow\begin{cases}31a-32a+1=0\\b=-8a\left(1\right)\end{cases}\)
31a-3a+1=0 <=>a=1.Từ (1) =>b=-8
Vậy a= 1 và b= -8
a) \(4x^2-1=0\)
\(\left(2x-1\right)\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\)
vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\)
b) \(2x^2+0,82=1\)
\(2x^2=1-0,82\)
\(2x^2=0,18\)
\(x^2=\frac{0,18}{2}\)
\(x^2=0,09\)
\(\Rightarrow x=0,3\)
vậy \(x=0,3\)
c) \(7-\sqrt{x}=0\)
\(\sqrt{x}=7\)
\(x=49\)
vậy \(x=49\)
d) ko rõ đề bài
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn dễ hơn nhé.