K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 10 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn dễ hơn nhé.

17 tháng 2 2020

a) Ta có : \(x=\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7\)                    (1)

\(y=\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7\)             (2)

Từ (1) và (2) => x = y

b) Ta có : \(x=\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}\)        (1)

\(y=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24-\frac{1}{\sqrt{6}}+1=25-\frac{1}{\sqrt{6}}\) (2)

Vì \(\sqrt{5}< \sqrt{6}\)nên \(\frac{1}{\sqrt{5}}>\frac{1}{\sqrt{6}}\)(3)

(1),(2),(3) => \(x>y\)

17 tháng 2 2020

Mà Mun Già ơi, chỗ mà câu a đó, KL hình như sai rồi, từ (1) và (2) suy ra x<y chứ sao = nhau đc

24 tháng 10 2019

căn bậc 2 của x+y+z nhé (vẽ xấu quá thông cảm.)

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:

Ta thấy: $\sqrt{(x-2024)^2}\geq 0$ với mọi $x\in\mathbb{R}$

$|x+y-4z|\geq 0$ với mọi $x,y,z\in\mathbb{R}$

$\sqrt{5y^2}\geq 0$ với mọi $y\in\mathbb{R}$

Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó phải nhận giá trị $0$

Hay:
$\sqrt{(x-2024)^2}=|x+y-4z|=\sqrt{5y^2}=0$

$\Leftrightarrow x=2024; y=0; z=\frac{x+y}{4}=506$

2 tháng 6 2017

a) x = \(\sqrt{7}\)

b) x =  + - căn 10

c) x = căn 14

d) x bằng 2  / căn 3

e) x = 1 / căn 8

f) x = 1 - căn 2 / 2

7 tháng 8 2017

i don't khow

3 tháng 11 2023

x=2024, z= 506, y=0