Cho tam giác ABC có phân giác BD; CE cắt tại O. Chứng minh:
a, BD vuông góc AC và CE vuông góc AB
b, OA=OB=OC
c,góc AOB=góc BOC= góc COA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\widehat{ABD}=\widehat{BAM}\)
\(\widehat{DBC}=\widehat{AMB}\)
mà \(\widehat{ABD}=\widehat{DBC}\)
nên \(\widehat{BAM}=\widehat{AMB}\)
a: Ta có: \(\widehat{ABD}=\widehat{BAM}\)
\(\widehat{DBC}=\widehat{AMB}\)
mà \(\widehat{ABD}=\widehat{DBC}\)
nên \(\widehat{BAM}=\widehat{AMB}\)
a: Ta có: \(\widehat{ABD}=\widehat{BAM}\)
\(\widehat{DBC}=\widehat{BMA}\)
mà \(\widehat{ABD}=\widehat{DBC}\)
nên \(\widehat{BAM}=\widehat{BMA}\)
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow AB^2=BD^2-AD^2=\left(4\sqrt{10}\right)^2-4^2=144\)
hay AB=12(cm)
Xét ΔABD vuông tại A có
\(\tan\widehat{ABD}=\dfrac{AD}{AB}=\dfrac{4}{12}=\dfrac{1}{3}\)
hay \(\widehat{ABD}\simeq18^026'\)
mà \(\widehat{ABC}=2\cdot\widehat{ABD}\)(BD là tia phân giác của \(\widehat{ABC}\))
nên \(\widehat{ABC}\simeq36^052'\)
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan\widehat{ABC}\)
\(\Leftrightarrow AC=12\cdot\tan36^052'\simeq9\)(cm)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{12\cdot9}{2}=\dfrac{108}{2}=54\left(cm^2\right)\)
a) Xét ΔABHΔABH và ΔHACΔHAC có
AB=AC;ˆBAH=ˆCAH;AH:chungAB=AC;BAH^=CAH^;AH:chung
⇒⇒ ΔABHΔABH = ΔHACΔHAC (cgc)
b) Có BK = AB ⇒ΔABK⇒ΔABK cân tại B