Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đường tròn (O) đi qua ba điểm A, B, C. Đường phân giác của cắt cung nhỏ AC tại E. Xét hai tam giác ABE và DBC, chúng có: (gt), (hai góc nội tiếp cùng chắn cung AB).
Vậy ∆ ABE ~ ∆ DBC => =
=> AB.BC = BD.BE = (BD + DE).BD = BD2 + DE.BD
=> BD2 = AB.BC - DE.BD (1)
Dễ dàng có ∆ DBC ~ ∆ DAE => = => DE.BD = AD.DC (2).
Thay (2) vài (1) ta có điều phải chứng minh.
A B C D E 1 2 1 2 1 1
Từ A dựng đường thẳng //với BC cắt BD kéo dài tại E
\(\Rightarrow\widehat{E_1}=\widehat{B_2}\) (góc so le trong)
Mà \(\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow\widehat{B_1}=\widehat{E_1}\) => tg ABE cân tại A => BA=AE (1)
Áp dụng hệ quả định lý ta let đối với tam giác ta có
\(\frac{CD}{DA}=\frac{BC}{AE}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{CD}{DA}=\frac{BC}{BA}=\frac{2BA}{BA}=2\Rightarrow CD=2DA\)
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: AD=DM
DM<DC
=>AD<DC
A)XÉT \(\Delta ABD\)VÀ\(\Delta HBD\)CÓ
\(\widehat{BAD}=\widehat{BHD}=90^o\)
\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)
BD LÀ CẠNH CHUNG
=>\(\Delta ABD\)=\(\Delta HBD\)(CẠNH HUYỀN - GÓC NHỌN ) ( ĐPCM)
GỌI I LÀ GIAO ĐIỂM CỦA BD VÀ AH
XÉT \(\Delta ABI\)VÀ\(\Delta HBI\)CÓ
\(AB=BH\left(\Delta ABD=\Delta HBD\right)\)
\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)
BI LÀ CẠNH CHUNG
=>\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)
\(\Rightarrow\widehat{AIB}=\widehat{HIB}\)( HAI GÓC TƯƠNG ỨNG)
MÀ HAI GÓC NÀY KỀ BÙ
\(\Rightarrow\widehat{AIB}=\widehat{HIB}=\frac{180^o}{2}=90^o\left(1\right)\)
mà\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)
=> AI=HI( HAI CẠNH TƯƠNG ỨNG ) (2)
TỪ 1 VÀ 2 => BI LÀ ĐƯỜNG TRUNG TRỰC CỦA AH HAY BD LÀ ĐƯỜNG TRUNG TRỰC CỦA AH(ĐPCM)
B)
b)
Vì \(\Delta\)DBA =\(\Delta\) DBH ( cm ở câu a )
=) AD = DH
Xét\(\Delta\)DHC ( DHC = 90 ) có :
DC là cạnh huyền
\(\Rightarrow\) DC là cạnh lớn nhất
\(\Rightarrow DC>DH\)
mà DH = AD
\(\Rightarrow AD< DC\)
a, Xét △ABD vuông tại A và △HBD vuông tại H
Có: BD là cạnh chung
ABD = HBD (gt)
=> △ABD = △HBD (ch-gn)
=> AB = BH (2 cạnh tương ứng) => B thuộc đường trung trực của AH
và AD = HD (2 cạnh tương ứng) => D thuộc đường trung trực của AH
=> BD là đường trung trực của AH
b, Xét △HDC vuông tại H có: DC > DH (quan hệ giữa đường xiên và đường vuông góc)
=> DC > AD
A B C E D
Xét tam giác ABD và tam giác EBD có :
AB = BE (trung điểm)
góc ABD = góc EBD (phân giác) => tam giác ABD = tam giác EBD (c.g.c)
BD chung
=> góc BDA = góc BDE
Mà DB thuộc góc ADE
=> DB là phân giác của góc ADE
b) Ta có góc BAD = góc BED (2 góc tương ứng)
Vì góc BED kề bù với góc CED
=> góc BED + CED = 180
mà góc BED = 90
=> góc CED = 90
Xét tam giác BED và tam giác CED có :
BE = CE
Góc BED = góc CED => tam giác BED = tam giác CED (c.g.c)
DE chung
=> BD = CD (2 cạnh tương ứng)
c) tự làm
Từ 2 tam giác bằng nhau BED và tam giác CED , có
góc DBE = ECD (2 góc tương ứng )
Mà góc ABD = góc DBE = góc ECD (1)
Xét tam giác ABC có :
góc BAC + góc ABC + góc BCA = 180
Mà góc BAC = 90 ; và (1)
=> góc ABC + góc BCA = 2.góc ABD + góc ABD = 90
=> 3. góc ABD = 90
=> góc ABD = 30
=> ABD = góc DBE = góc ECD = 30
=> Góc ABC = 60 ; góc BCA = 30