K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

x = 0 nhe

6 tháng 3 2017

x bang 0

1 tháng 4 2022

\(2x=7-\dfrac{5}{x}\)đk x khác 0 

\(2x^2-7x+5=0\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\Leftrightarrow x=1;x=\dfrac{5}{2}\left(tm\right)\)

27 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

13 tháng 9 2017

\(\frac{-3}{\sqrt{x}+1}=\frac{-3}{\sqrt{4}+1}=\frac{-3}{2+1}=\frac{-3}{3}=-1\)

13 tháng 9 2017

-1

chắc chắn 100%

15 tháng 12 2022

\(\sqrt{x}\) x \(\sqrt{x}\) = \(\sqrt{x^2}\) = |x|

29 tháng 10 2023

ĐKXĐ: x>=4

\(A=\dfrac{1}{x-4\sqrt{x-4}+3}\)

\(=\dfrac{1}{x-4-4\sqrt{x-4}+4+3}\)

\(=\dfrac{1}{\left(\sqrt{x-4}-2\right)^2+3}\)

\(\left(\sqrt{x-4}-2\right)^2+3>=3\)

=>\(A=\dfrac{1}{\left(\sqrt{x-4}-2\right)^2+3}< =\dfrac{1}{3}\)

Dấu = xảy ra khi \(\sqrt{x-4}-2=0\)

=>x-4=4

=>x=8

17 tháng 10 2021

\(P=\left[\dfrac{-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+1\right]\cdot\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\\ P=\dfrac{-\sqrt{x}+\sqrt{x}+3}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\\ P=\dfrac{3}{\sqrt{x}-2}< 0\Leftrightarrow\sqrt{x}-2< 0\left(3>0\right)\\ \Leftrightarrow x< 4\Leftrightarrow0\le x< 4\)

Vậy có 3 giá trị x nguyên dg thỏa mãn đề là 1;2;3

20 tháng 7 2016

Ta có : \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

\(\left(\sqrt{x}-1\right)^2\ge0\) , \(\left(\sqrt{y-1}-1\right)^2\ge0\)\(\left(\sqrt{z-2}-1\right)^2\ge0\) nên phương trình trên tương đương với 

\(\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=0\\\left(\sqrt{y-1}-1\right)^2=0\\\left(\sqrt{z-2}-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)

Từ đó tính được : \(x^2+y^2+z^2=1^2+2^2+3^2=14\)

20 tháng 7 2016

Ta có:

\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\)

=\(\sqrt{x.1}+\sqrt{\left(y-1\right).1}+\sqrt{\left(z-2\right).1}\)

\(\le\frac{x+1}{2}+\frac{y-1+1}{2}+\frac{z-2+1}{2}\)

=\(\frac{x+y+z}{2}\)

Dấu"=" xảy ra khi \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

Ta có:x2+y2+z2=1+22+32=14