Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: \(-\sqrt{5}\le x\le\sqrt{5}\)
*) Ta có: \(M^2=\left(2x+\sqrt{5-x^2}\right)^2\le\left(2^2+1^2\right)\left(x^2+5-x^2\right)=25\Rightarrow M^2\le25\Rightarrow-5\le M\le5\)
Nếu M=5 thì \(M^2=25\)
Dấu '=' xảy ra khi và chỉ khi \(\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)
Vậy Max M=5 khi x=2
*) Theo trên thì \(-5\le M\le5\)nhưng GTNN của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\Rightarrow M\ge-2\sqrt{5}\)
Vậy Min M = \(-2\sqrt{5}\)khi \(x=-\sqrt{5}\)
ĐK: \(-\sqrt{5}\le x\le\sqrt{5}\)
Ta có \(M^2=\left(2x+\sqrt{5-x^2}\right)\le\left(2^2+1\right)\left(x^2+5-x^2\right)=25\)
\(\Rightarrow M\le25\Rightarrow-5\le M\le5\)
Nếu M=5 thì M2=25 dấu BĐT xảy ra \(\Leftrightarrow\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)
vậy maxM=5 khi x=2
Theo trên thì -5 \(\le M\le5\)nhưng giá trị nhỏ nhất của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\)=> M\(\ge-2\sqrt{5}\)
Vậy minM=\(-2\sqrt{5}\)khi x\(=-\sqrt{5}\)
x+y+z=xyz+1
Giả sử x lớn hơn =y lớn hơn =z
=> 3x> xyz+1 >xyz
=> 3> yz
do y,z nguyên dương nnee tìm đc y,z
áp dụngBĐT cô si ta có
\(\frac{x^2}{y+1}\)+\(\frac{y+1}{4}\)\(\ge\)x
\(\frac{y^2}{z+1}\)+\(\frac{z+1}{4}\)\(\ge\)y
\(\frac{z^2}{x+1}\)+\(\frac{x+1}{4}\)\(\ge\)z
khi đó VT\(\ge\)x+y+z-\(\frac{x+y+z+3}{4}\)=\(\frac{3\left(x+y+z\right)-3}{4}\)
áp dụng BĐT cô si
x+y+z\(\ge\)\(3\sqrt[3]{xyz}\)=3
do đó VT\(\ge\)\(\frac{6}{4}\)=\(\frac{3}{2}\) (đpcm)
1234567890x1234567890-1234567890x1234567890+1234509876=
=1234509876
ai tích mình tích lại nhà