K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

\(\sqrt{x-5+4\sqrt{x-5}+4}+\sqrt{x-5-4\sqrt{x-5}+4}=2\left(x-17\right)\)

\(\sqrt{\left(\sqrt{x-5}+4\right)^2}+\sqrt{\left(\sqrt{x-5}-4\right)^2}=2\left(x-17\right)\)

\(\left|\sqrt{x-5}+4\right|+\left|\sqrt{x-5}-4\right|=2\left(x-17\right)\) (1)

Do \(x\ge17\) nên từ (1) suy ra \(2\sqrt{x-5}=2\left(x-17\right)\)

\(x-5-\sqrt{x-5}-12=0\)

\(\left[{}\begin{matrix}\sqrt{x-5}=4\\\sqrt{x-5}=-3\end{matrix}\right.\)\(x=21\) (t/m)

26 tháng 2 2021

a) đk: \(1\le x\le5\)

 \(\sqrt[4]{5-x}+\sqrt[4]{x-1}=\sqrt{2}\)

<=> \(\left(\sqrt[4]{5-x}+\sqrt[4]{x-1}\right)^4=\sqrt{2}^4\)

<=> \(5-x+x-1+4\sqrt[4]{5-x}^3.\sqrt[4]{x-1}+6\sqrt[4]{5-x}^2.\sqrt[4]{x-1}^2+4\sqrt[4]{5-x}.\sqrt[4]{x-1}^3=4\)

<=> \(\sqrt[4]{\left(5-x\right)\left(x-1\right)}.\left(2\sqrt[4]{5-x}^2+3\sqrt[4]{5-x}.\sqrt[4]{x-1}+2\sqrt[4]{x-1}^2\right)=0\)

<=> \(\left[{}\begin{matrix}\sqrt[4]{\left(5-x\right)\left(x-1\right)}=0\left(2\right)\\2\sqrt[4]{5-x}^2+3\sqrt[4]{\left(5-x\right)\left(x-1\right)}+2\sqrt[4]{x-1}^2=0\left(1\right)\end{matrix}\right.\)

Giải (2) <=> \(\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\left(tm\right)\)

Giải (1) : Đặt \(\sqrt[4]{5-x}=a;\sqrt[4]{x-1}=b\)(đk : a, b \(\ge\)0)

Khi đó, ta có: \(2a^2+3ab+2b^2=0\)

<=> 2(a2 + 3/2ab + 9/16b2) + \(\dfrac{7}{8}b^2=0\)

<=> \(2\left(a+\dfrac{3}{4}b\right)^2+\dfrac{7}{8}b^2=0\)

<=> \(\left\{{}\begin{matrix}a+\dfrac{3}{4}b=0\\b=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\sqrt[4]{x-1}=0\\\sqrt[4]{5-x}=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)(vô lí)

 

3 tháng 12 2021

 sao cách này rắc rối quá vậy , có cách nào đơn giản hơn không?  mà pt này rõ ràng có nghiệm chứ có phải vô nghiệm đâu 

27 tháng 8 2016

a đưa về bình phương r` dùng cauchy, b cx v

\(\left\{{}\begin{matrix}x+y=1000\\\dfrac{15}{100}x+\dfrac{17}{100}y=1162\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{15}{100}x+\dfrac{15}{100}y=150\\\dfrac{15}{100}x+\dfrac{17}{100}y=1162\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{2}{100}y=150-1162=-1012\\x+y=1000\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=50600\\x=1000-50600=-49600\end{matrix}\right.\)