Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình 3x – 2 = 0 có nghiệm x = 2/3, thay x = 2/3 vào phương trình
(m + 3)x - m + 4 = 0 , ta có
2(m + 3) / 3 - m + 4 = 0
⇔ -m / 3 + 6 = 0 ⇔ m = 18
Với m = 18 phương trình (m + 3)x - m + 4 = 0 trở thành 21x = 14 hay x = 2/3
Vậy hai phương trình tương đương khi m = 18.
Phương trình x + 2 = 0 có nghiệm x = -2. Thay x = -2 vào phương trình
m ( x 2 + 3 x + 2 ) + m 2 x + 2 = 0 , ta có
-2m2 + 2 = 0 ⇔ m = 1 hoặc m = -1
Khi m = 1 phương trình thứ hai trở thành
x 2 + 4 x + 4 = 0
⇔ x = -2
Khi m = -1 phương trình thứ hai trở thành
- x 2 - 2 x = 0
⇔ -x(x + 2) = 0
Phương trình này có hai nghiệm x = 0 , x = -2.
Vậy hai phương trình đã cho tương đương khi m = 1.
a) \(3x-2=0\Leftrightarrow x=\dfrac{2}{3}\)
Thay \(x=\dfrac{2}{3}\)
\(\left(m+3\right)\)\(\dfrac{2}{3}-m+4=0\)
\(\dfrac{2}{3}m+2-m+4=0\)
\(\dfrac{-1}{3}m+6=0\)
\(\dfrac{-1}{3}m=-6\)
\(m=18\)
b) \(x+2=0\)\(\Leftrightarrow x=-2\).
Để hai phương trình tương đương thì phương trình \(m\left(x^2+3x+2\right)+m^2x+2=0\) có duy nghiệm là \(x=-2\).
Suy ra: \(m\left[\left(-2\right)^2+3.\left(-2\right)+2\right]+m^2.\left(-2\right)+2=0\)\(\Leftrightarrow m^2=1\)\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\).
Thay \(m=1\) vào phương trình \(m\left(x^2+3x+2\right)+m^2x+2=0\) ta được:
\(x^2+3x+2+x+2=0\)\(\Leftrightarrow\left(x+2\right)^2=0\)\(\Leftrightarrow x=-2\).
Vậy \(m=1\) thỏa mãn,
Thay \(m=-1\) vào phương trình:
\(-1\left(x^2+3x+2\right)+\left(-1\right)^2x+2=0\)\(\Leftrightarrow-x^2-2x=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\) .
Vậy \(m=-1\) không thỏa mãn.
a: Ta có: \(\left(x+1\right)^2=0\)
=>x+1=0
hay x=-1
Thay x=-1 vào \(mx^2-\left(2m+1\right)x+m=0\), ta được:
m+2m+1+m=0
=>3m=-1
hay m=-1/3
b:x+2=0
nên x=-2
Thay x=-2 vào \(\dfrac{mx}{x+3}+3m-1=0\), ta được:
\(\dfrac{-2m}{-2+3}+3m-1=0\)
=>-2m+3m-1=0
=>m=1
d: 3x-2=0
=>x=2/3
Thay x=2/3 vào (m+3)x-m+4=0, ta được:
\(\dfrac{2}{3}\left(m+3\right)-m+4=0\)
\(\Leftrightarrow\dfrac{2}{3}m+2-m+4=0\)
=>6-1/3m=0
=>1/3m=6
hay m=18
a) \(x+2=0\Leftrightarrow x=-2\)
Phương trình: \(\dfrac{mx}{x+3}=3m-1\) (*) có đkxđ: \(x\ne-3\)
Vì cặp phương trình tương đương nên phương trình (*) có nghiệm là x = -2:
\(\dfrac{2m}{2+3}+3m-1=0\) \(\Leftrightarrow\dfrac{2m}{5}+3m=1\)\(\Leftrightarrow m\left(\dfrac{2}{5}+3\right)=1\)
\(\Leftrightarrow\dfrac{17}{5}m=1\) \(m=\dfrac{5}{17}\)
Vậy \(m=\dfrac{5}{17}\) thì hai phương trình tương đương.
b) Pt (1) \(x^2-9=0\) có hai nghiệm là: \(x=3;x=-3\).
Để cặp phương trình tương đương thì phương trình (2) \(2x^2+\left(m-5\right)x-3\left(m+1\right)=0\) có nghiệm là: \(x=3;x=-3\).
Suy ra: \(\left\{{}\begin{matrix}2.3^2+\left(m-5\right).3-3.\left(m+1\right)=0\\2.\left(-3\right)^2+\left(m-5\right).\left(-3\right)-3.\left(m+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0=0\\30-6m=0\end{matrix}\right.\) \(\Leftrightarrow m=5\)
Vậy m = 5 thì hai phương trình tương đương.
2.
b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)
\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)
\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)
\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)
Vậy \(m\in\left(-2;4\right)\)
2.
a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow m>5\)
\(\text{Δ}_1=\left(-3\right)^2-4\cdot1\cdot\left(2m+3\right)\)
\(=9-8m-12\)
\(=-8m-3\)
\(\text{Δ}_2=\left(-4\right)^2-4\cdot1\cdot\left(m-1\right)\)
\(=16-4m+4\)
\(=-4m+20\)
Để (2) là phương trình hệ quả của (1) thì -8m-3=-4m+20
\(\Leftrightarrow-4m=23\)
hay \(m=-\dfrac{23}{4}\)
a) tử x^2 -8x +20 =(x-4)^2 +4 >0 mọi x => cần
mẫu <0 với mọi x
cần m<0
đủ (m+1)^2 -m(9m+4) <0
<=> m^2 +2m -1 >0
del(m) =1 +1 =2
m <=(-1 -can2)/2
Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)
a/ \(1\left(m+1\right)< 0\Rightarrow m< -1\)
b/ \(-3\left(4-m^2\right)< 0\Leftrightarrow m^2-4< 0\Rightarrow-2< m< 2\)
c/ \(\left(m-1\right)\left(m^2+4m-5\right)< 0\)
\(\Leftrightarrow\left(m-1\right)^2\left(m+5\right)< 0\Rightarrow m< -5\)
d/ \(\left(m+1\right)\left(m+1\right)< 0\Leftrightarrow\left(m+1\right)^2< 0\)
\(\Rightarrow\) Ko tồn tại m thỏa mãn
e/ \(2m\left(-m^2-2m+3\right)< 0\)
\(\Leftrightarrow2m\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}-3< m< 0\\m>1\end{matrix}\right.\)
f/ \(4\left(2m^2-5m+2\right)< 0\Rightarrow\frac{1}{2}< m< 2\)
g/ \(\left(6-m\right)\left(-m^2-2m+3\right)< 0\)
\(\Leftrightarrow\left(6-m\right)\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}m< -3\\1< m< 6\end{matrix}\right.\)
h/ \(m\left(2m-1\right)< 0\Rightarrow0< m< \frac{1}{2}\)
- Điều kiện cần:
Phương trình \(3x-1\) có nghiệm là \(x=\dfrac{1}{3}\).
Điều kiện xác định của \(\dfrac{3mx+1}{x-2}+2m-1=0\) là \(x\ne2\).
Để cặp phương trình tương đương thì phương trình \(\dfrac{3mx+1}{x-2}+2m-1=0\) có nghiệm duy nhất là \(x=\dfrac{1}{3}\).
Từ đó suy ra: \(\dfrac{3m.\dfrac{1}{3}+1}{\dfrac{1}{3}-2}+2m-1=0\)\(\Leftrightarrow-\dfrac{3}{5}\left(m+1\right)+2m-1=0\)\(\Leftrightarrow\dfrac{7}{5}m-\dfrac{8}{5}=0\)\(\Leftrightarrow m=\dfrac{8}{7}\).
- Điều kiện đủ
Thay \(m=\dfrac{8}{7}\) vào phương trình \(\dfrac{3mx+1}{x-2}+2m-1=0\) ta được:
\(\dfrac{3.\dfrac{8}{7}x+1}{x-2}+2.\dfrac{8}{7}-1=0\)\(\Leftrightarrow\dfrac{24}{7}x+1+\dfrac{9}{7}\left(x-2\right)=0\)\(\dfrac{33}{7}x-\dfrac{11}{7}\)\(\Leftrightarrow x=\dfrac{1}{3}\).
Vậy \(m=\dfrac{8}{7}\) thì cặp phương trình tương đương.
\(x^2+3x-4=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\).
Để cặp phương trình tương đương thì \(mx^2-4x-m+4=0\) có hai nghiệm là \(x=1\) và \(x=-4\) .
Với \(x=1\) ta có: \(m.1^2-4.1-m+4=0\)\(\Leftrightarrow0=0\).
Vậy phương trình \(mx^2-4x-m+4=0\) luôn có một nghiệm \(x=1\).
Thay \(x=-4\) ta có: \(m.\left(-4\right)^2-4.\left(-4\right)-m+4=0\)\(\Leftrightarrow m=-\dfrac{4}{3}\).
Vậy \(m=-\dfrac{4}{3}\) thì cặp phương trình tương đương.