Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán và ghi đầy đủ yêu cầu đề để mọi người hiểu đề của bạn hơn nhé.
6:ĐKXĐ: x>=0; x<>1/25
BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)
=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)
=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)
7:
ĐKXĐ: x>=0
BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)
=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)
=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)
=>\(-\sqrt{x}-2>=0\)(vô lý)
8:
ĐKXĐ: x>=0; x<>9/4
BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)
=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)
=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)
TH1: 9căn x-14>0 và 2căn x-3<0
=>căn x>14/9 và căn x<3/2
=>14/9<căn x<3/2
=>196/81<x<9/4
TH2: 9căn x-14<0 và 2căn x-3>0
=>căn x>3/2 hoặc căn x<14/9
mà 3/2<14/9
nên trường hợp này Loại
9:
ĐKXĐ: x>=0
\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)
=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)
=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)
=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)
10:
ĐKXĐ: x>=0; x<>1/49
\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)
=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)
=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)
=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)
TH1: 6căn x-1>0 và 7căn x-1>0
=>căn x>1/6 và căn x>1/7
=>căn x>1/6
=>x>1/36
TH2: 6căn x-1<0 và 7căn x-1<0
=>căn x<1/6 và căn x<1/7
=>căn x<1/7
=>0<=x<1/49
a) Gọi x²=a
=> 3a² - a - 234=0
∆=b² - 4ac= (-1)²-4×3×(-234)=2809
√∆=53
∆>0 nên pt có 2 nghiệm phân biệt
a1=-b+√∆/2a = -(-1)+53/2×3 =9
a2=-b-√∆/2a = -(-1)-53/2×3 =-26/3
Thay x²=a=9 =>x=3,x=-3
x²=a=-26/3 (loại)
Vậy nghiệm của pt là x =3, x=-3
d) (x+4)(x+5)(x+7)(x+8)=4
<=> (x+4)(x+8)(x+5)(x+7)=4
<=> (x²+8x+4x+32)(x²+7x+5x+35)=4
<=> (x²+12x+32)(x²+12x+35)=4
Đặt t=x²+12x+32
=> t(t+3)=4
<=> t²+3t-4=0
(a=1,b=3,c=-4)
a+b+c=1+3+(-4)=0
=> t1=1 ; t2= c/a =-4/1=-4
Thay t=x²+12x+32=1
=> x²+12x+31=0
∆=b²-4ac= 12² -4×1×31= 20
√∆=2√5
∆>0 nên pt có 2 nghiệm phân biệt
x1=-b+√∆/2a= -12+2√5/2×1= -6+√5
x2=-b-√∆/2a = -12-2√5/2×1= -6-√5
Thay t=x²+12x+32=-4
=> x²+12x+36=0
∆=b²-4ac= 12²-4×1×36=0
∆=0 nên pt có nghiệm kép
x1=x2= -b/2a= -12/2×1 = -6
Vậy nghiệm của pt là S={-6+√5 ; -6-√5; -6}
e) Ta có: \(\sqrt{1-12x+36x^2}=5\)
\(\Leftrightarrow\left|6x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}6x-1=5\\6x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=6\\6x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{2}{3}\right\}\)
a: Ta có: \(\dfrac{3}{x^2+x-2}-\dfrac{1}{x-1}=\dfrac{-7}{x+2}\)
\(\Leftrightarrow3-\left(x+2\right)=-7\left(x-1\right)\)
\(\Leftrightarrow3-x-2+7x-7=0\)
\(\Leftrightarrow6x-6=0\)
hay x=1(loại
b: Ta có: \(\dfrac{2}{-x^2+6x-8}-\dfrac{x-1}{x-2}=\dfrac{x+3}{x-4}\)
\(\Leftrightarrow\dfrac{-2}{\left(x-2\right)\left(x-4\right)}-\dfrac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}=\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}\)
Suy ra: \(-2-x^2+5x-4=x^2+x-6\)
\(\Leftrightarrow-x^2+5x-6-x^2-x+6=0\)
\(\Leftrightarrow-2x^2+4x=0\)
\(\Leftrightarrow-2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(loại\right)\end{matrix}\right.\)
\(\dfrac{3}{x^2+x-2}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)
\(\Rightarrow\dfrac{3}{\left(x^2-x\right)+\left(2x-2\right)}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)
\(\Rightarrow\dfrac{3}{x\left(x-1\right)+2\left(x-1\right)}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)
\(\Rightarrow\dfrac{3}{\left(x+2\right)\left(x-1\right)}-\dfrac{1}{x-1}+\dfrac{7}{x+2}=0\)
\(\Rightarrow\dfrac{3}{\left(x+2\right)\left(x-1\right)}-\dfrac{x+2}{\left(x+2\right)\left(x-1\right)}+\dfrac{7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=0\)
\(\Rightarrow\dfrac{3-\left(x+2\right)+7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=0\)
\(\Rightarrow3-x-2+7x-7=0\)
\(\Rightarrow6x-6=0\)
\(\Rightarrow x=1\)
a) ĐK: \(x^2+7x+7\ge0\)
Đặt \(a=\sqrt{x^2+7x+7}\) \(\left(a\ge0\right)\)
PT \(\Rightarrow3a^2-3+2a=2\) \(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2+7x+7=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) (Thỏa mãn)
Vậy ...
b) ĐK: \(x^2-6x+6\ge0\)
Đặt \(a=\sqrt{x^2-6x+6}\) \(\left(a\ge0\right)\)
PT \(\Rightarrow a^2+3=4a\) \(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\) (Thỏa mãn)
+) Với \(a=3\) \(\Rightarrow x^2-6x+6=9\) \(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{matrix}\right.\) (Thỏa mãn)
+) Với \(a=1\) \(\Rightarrow x^2-6x+6=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\) (Thỏa mãn)
Vậy ...
c)C1: Áp dụng bđt AM-GM \(\Rightarrow VT\ge2>\dfrac{7}{4}\)
=> Dấu = ko xảy ra hay pt vô nghiệm
C2: Đk:\(x>0\)
Đặt \(a=\sqrt{\dfrac{x^2+x+1}{x}}\left(a>0\right)\) \(\Rightarrow\dfrac{1}{a}=\sqrt{\dfrac{x}{x^2+x+1}}\)
Pttt: \(a+\dfrac{1}{a}=\dfrac{7}{4}\Leftrightarrow4a^2-7a+4=0\)
\(\Delta =-15<0 \) => Pt vô nghiệm
Vậy...
d) Đk: \(x\le-8;x\ge0\)
Đặt \(t=\sqrt{x\left(8+x\right)}\left(t\ge0\right)\)
Pttt: \(t^2-3=2t\Leftrightarrow t^2-2t-3=0\Leftrightarrow\left[{}\begin{matrix}t=3\left(tm\right)\\t=-1\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x\left(8+x\right)}=3\Leftrightarrow x^2+8x-9=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\) (tm)
Vậy...
a) \(\dfrac{1}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}=4\) (1)
\(\Leftrightarrow\dfrac{1}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-4=0\)
\(\Leftrightarrow\dfrac{2-\sqrt{x}+2+\sqrt{x}-4\left(2+\sqrt{x}\right)\cdot\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=0\)
\(\Leftrightarrow2-\sqrt{x}+2+\sqrt{x}-4\left(2+\sqrt{x}\right)\cdot\left(2-\sqrt{x}\right)=0\)
\(\Leftrightarrow2+2-4\left(4-x\right)=0\)
\(\Leftrightarrow2+2-16+4x=0\)
\(\Leftrightarrow-12+4x=0\)
\(\Leftrightarrow4x=12\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{3\right\}\)
b) \(\dfrac{8-\sqrt{x}}{\sqrt{x}-7}+\dfrac{1}{7-\sqrt{x}}=8\) (2)
\(\Leftrightarrow\dfrac{8-\sqrt{x}}{\sqrt{x}-7}+\dfrac{1}{7-\sqrt{x}}-8=0\)
\(\Leftrightarrow\dfrac{8-\sqrt{x}-1-8\left(\sqrt{x}-7\right)}{\sqrt{x}-7}=0\)
\(\Leftrightarrow8-\sqrt{x}-1-8\left(\sqrt{x}-7\right)=0\)
\(\Leftrightarrow8-\sqrt{x}-1-8\sqrt{x}+56=0\)
\(\Leftrightarrow63-9\sqrt{x}=0\)
\(\Leftrightarrow-9\sqrt{x}=-63\)
\(\Leftrightarrow\sqrt{x}=7\)
\(\Leftrightarrow x=49\)
sau khi thử lại ta nhận thấy: \(\dfrac{8-\sqrt{49}}{\sqrt{49}-8}+\dfrac{1}{7-\sqrt{49}}=8\)\(\Leftrightarrow\dfrac{1}{0}+\dfrac{1}{7-\sqrt{49}}=8\)
\(\Rightarrow x\ne48\)
\(\Rightarrow x\in\varnothing\)
Em sửa lại tí ạ,nãy vội quá không để ý là ngược dấu:
Từ chỗ:
\(2t^2+2t\sqrt{\left(t-\frac{1}{2}\right)^2-\frac{25}{4}}-t-15=0\)
\(\Leftrightarrow2t^2+18+2t\sqrt{\left(t-\frac{1}{2}\right)^2-\frac{25}{4}}-t-33=0\)
Áp dụng BĐT AM-GM,ta có:
\(VT\ge2\sqrt{2t^2.18}+2t\sqrt{\left(t-\frac{1}{2}\right)^2-\frac{25}{4}}-t-33\)
\(=11t+2t\sqrt{\left(t-\frac{1}{2}\right)^2-\frac{25}{4}}-33\)
\(\ge11.3+2.3.0-33=0=VP\)
Dấu "=" xảy ra khi \(2t^2=18\Leftrightarrow t=3\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x=2\left(TMĐK\right)\)
Tìm x đúng ko?
ĐK: \(x\ge-1\).Đặt \(\sqrt{x+7}=t\)
Pt trở thành: \(\sqrt{t^2+2t+1}+\sqrt{t^2-t-6}=4\)
\(\Leftrightarrow t+1+\sqrt{\left(t-\frac{1}{2}\right)^2-\frac{25}{4}}=4\) (\(t\ge3\))
\(\Leftrightarrow t+\sqrt{\left(t-\frac{1}{2}\right)^2-\frac{25}{4}}=3\)
\(\Leftrightarrow t^2+2t\sqrt{\left(t-\frac{1}{2}\right)^2-\frac{25}{4}}+\left(t-\frac{1}{2}\right)^2-\frac{25}{4}=9\)
\(\Leftrightarrow2t^2+2t\sqrt{\left(t-\frac{1}{2}\right)^2-\frac{25}{4}}-t-15=0\) (1)
Do \(t\ge3\) nên \(VT\ge0\).Kết hợp (1) suy ra t = 3.
Vậy \(\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\left(TMĐK\right)\)
a)\(\sqrt{x^2-\frac{7}{x^2}}+\sqrt{x-\frac{7}{x^2}}=x\)
\(\Leftrightarrow\sqrt{x^2-\frac{7}{x^2}}-\frac{3}{2}+\sqrt{x-\frac{7}{x^2}}-\frac{1}{2}-x+2=0\)
\(\Leftrightarrow\frac{x^2-\frac{7}{x^2}-\frac{9}{4}}{\sqrt{x^2-\frac{7}{x^2}}+\frac{3}{2}}+\frac{x-\frac{7}{x^2}-\frac{1}{4}}{\sqrt{x-\frac{7}{x^2}}+\frac{1}{2}}-\left(x-2\right)=0\)
\(\Leftrightarrow\frac{\frac{\left(4x^2+7\right)\left(x-2\right)\left(x+2\right)}{4x^2}}{\sqrt{x^2-\frac{7}{x^2}}+\frac{3}{2}}+\frac{\frac{\left(x-2\right)\left(4x^2+7x+14\right)}{4x^2}}{\sqrt{x-\frac{7}{x^2}}+\frac{1}{2}}-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{\left(4x^2+7\right)\left(x+2\right)}{4x^2}}{\sqrt{x^2-\frac{7}{x^2}}+\frac{3}{2}}+\frac{\frac{4x^2+7x+14}{4x^2}}{\sqrt{x-\frac{7}{x^2}}+\frac{1}{2}}-1\right)=0\)
Dễ thấy: \(\frac{\frac{\left(4x^2+7\right)\left(x+2\right)}{4x^2}}{\sqrt{x^2-\frac{7}{x^2}}+\frac{3}{2}}+\frac{\frac{4x^2+7x+14}{4x^2}}{\sqrt{x-\frac{7}{x^2}}+\frac{1}{2}}-1=0\) vô nghiệm
Nên \(x-2=0\Rightarrow x=2\)
thắng nguyễn chứng minh giùm hộ với... vì sao đống lăng nhăng đó lại vô nghiệm