K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
10 tháng 7 2021
Ta có: \(\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}+3}{2\sqrt{x}+1}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}\)
\(=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)
a)\(\sqrt{x^2-\frac{7}{x^2}}+\sqrt{x-\frac{7}{x^2}}=x\)
\(\Leftrightarrow\sqrt{x^2-\frac{7}{x^2}}-\frac{3}{2}+\sqrt{x-\frac{7}{x^2}}-\frac{1}{2}-x+2=0\)
\(\Leftrightarrow\frac{x^2-\frac{7}{x^2}-\frac{9}{4}}{\sqrt{x^2-\frac{7}{x^2}}+\frac{3}{2}}+\frac{x-\frac{7}{x^2}-\frac{1}{4}}{\sqrt{x-\frac{7}{x^2}}+\frac{1}{2}}-\left(x-2\right)=0\)
\(\Leftrightarrow\frac{\frac{\left(4x^2+7\right)\left(x-2\right)\left(x+2\right)}{4x^2}}{\sqrt{x^2-\frac{7}{x^2}}+\frac{3}{2}}+\frac{\frac{\left(x-2\right)\left(4x^2+7x+14\right)}{4x^2}}{\sqrt{x-\frac{7}{x^2}}+\frac{1}{2}}-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{\left(4x^2+7\right)\left(x+2\right)}{4x^2}}{\sqrt{x^2-\frac{7}{x^2}}+\frac{3}{2}}+\frac{\frac{4x^2+7x+14}{4x^2}}{\sqrt{x-\frac{7}{x^2}}+\frac{1}{2}}-1\right)=0\)
Dễ thấy: \(\frac{\frac{\left(4x^2+7\right)\left(x+2\right)}{4x^2}}{\sqrt{x^2-\frac{7}{x^2}}+\frac{3}{2}}+\frac{\frac{4x^2+7x+14}{4x^2}}{\sqrt{x-\frac{7}{x^2}}+\frac{1}{2}}-1=0\) vô nghiệm
Nên \(x-2=0\Rightarrow x=2\)
thắng nguyễn chứng minh giùm hộ với... vì sao đống lăng nhăng đó lại vô nghiệm