K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

\(\frac{x}{40}+\frac{x}{30}=\frac{3}{4}\)

\(< =>\frac{70x}{1200}=\frac{900}{1200}\)

\(< =>\frac{7x}{120}=\frac{9}{120}\)

\(< =>x=\frac{9}{7}\)

Bài làm

\(\frac{x}{40}+\frac{x}{30}=\frac{3}{4}\)

\(\Leftrightarrow\frac{3x}{120}+\frac{4x}{120}=\frac{90}{120}\)

\(\Rightarrow7x=90\)

\(\Leftrightarrow x=\frac{90}{7}\)

Vậy \(x=\frac{90}{7}\)là nghiệm phương trình. 

2 tháng 10 2021

\(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1\)

\(=\left(x^2-1\right)\left(x-3\right)^2-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x-3-1\right)\left(x-3+1\right)\)

\(=\left(x^2-1\right)\left(x-4\right)\left(x-2\right)\)

15 tháng 1 2017

\(A=-x^2+x+30=\left(-x^2+\frac{2x}{2}-\frac{1}{4}\right)+30+\frac{1}{4}\)

\(=\frac{121}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{121}{4}\)

Vậy GTLN là  \(A=\frac{121}{4}\)đạt được khi \(x=\frac{1}{2}\)

mk chịu bn ơi

19 tháng 6 2016

xem lại đề, chỗ 3xy2

20 tháng 6 2016

Ta có:\(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)=0\)

\(\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]=0\)

\(x+y+z=0\)hoặc \(x=y=z\)(Đpcm)

21 tháng 7 2016

\(a,10^{30}=2^{30}.5^{30}\)

     \(2^{100}=\left(2^{50}\right)^2\)

\(\Rightarrow10^{30}< 2^{100}\)

tt

DD
25 tháng 12 2022

Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được

\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)

Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).

a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).

b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).

28 tháng 2 2021

`(x+1)(x+3)=2x^2-2`

`<=>x^2+x+3x+3=2x^2-2`

`<=>x^2-4x-5=0`

`<=>x^2-5x+x-5=0`

`<=>x(x-5)+(x-5)=0`

`<=>(x-5)(x+1)=0`

`<=>` $\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.$

Vậy `S={5,-1}`

Ta có: \(\left(x+1\right)\left(x+3\right)=2x^2-2\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2x^2+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x+3-2\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3-2x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

Vậy: S={-3;5}

5 tháng 8 2019

\(x^2-x-30\)

\(=x^2+5x-6x-30\)

\(=x\left(x+5\right)-6\left(x+5\right)\)

\(=\left(x+5\right)\left(x-6\right)\)

5 tháng 8 2019

\(x^2+5x-6x-30\)

\(=x\left(x+5\right)-6\left(x+5\right)\)

\(=\left(x-6\right)\left(x+5\right)\)