K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

1

NV
3 tháng 3 2019

\(P=3x+2y+\dfrac{6}{x}+\dfrac{8}{y}=\dfrac{3x}{2}+\dfrac{6}{x}+\dfrac{y}{2}+\dfrac{8}{y}+\dfrac{3}{2}\left(x+y\right)\)

\(\Rightarrow P\ge2\sqrt{\dfrac{3x}{2}.\dfrac{6}{x}}+2\sqrt{\dfrac{y}{2}.\dfrac{8}{y}}+\dfrac{3}{2}.6=19\)

\(\Rightarrow P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

26 tháng 12 2020

Phương trình đường thẳng ON có dạng \(y=a'x+b'\left(d'\right)\)

\(\left\{{}\begin{matrix}b'=0\\a'+b'=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b'=0\\a'=3\end{matrix}\right.\Rightarrow y=3x\left(d'\right)\)

\(y=ax+b\left(d\right)\) đi qua \(E\left(2;-1\right)\Rightarrow2a+b=-1\left(1\right)\)

\(\left(d\right)//\left(d'\right)\Leftrightarrow\left\{{}\begin{matrix}a=3\\b\ne0\end{matrix}\right.\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow b=-7\)

\(\Rightarrow S=a^2+b^2=58\)

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:

$x-1\geq |x^2-3x+2|\geq 0\Rightarrow |x-1|=x-1$. Do đó:

$x-1\geq |x^2-3x+2|$

$\Leftrightarrow |x-1|\geq |(x-1)(x-2)|$

$\Leftrightarrow |x-1|(1-|x-2|)\geq 0$

$\Leftrightarrow 1-|x-2|\geq 0$

$\Leftrightarrow -1\leq x-2\leq 1$

$\Leftrightarrow 1\leq x\leq 3$.

$\Rightarrow x\in [1;3]$

$b-a=2$ nên đáp án là D.

29 tháng 1 2021

Áp dụng bđt AM - GM:

\(T=\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}=\left(\dfrac{1}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\right)+\dfrac{8}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}\ge2\sqrt{\dfrac{1}{9}}+\dfrac{8}{9}.3=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\).

Đẳng thức xảy ra khi a = b = c.

Vậy Min T = \(\dfrac{10}{3}\) khi a = b = c.

AH
Akai Haruma
Giáo viên
6 tháng 12 2019

Lời giải:

a)

\(f(3)=3.3-8=1\)

\(f(-2)=3(-2)-8=-14\)

b)

\(y=f(x)=3x-8=1\)

\(\Leftrightarrow 3x=9\Leftrightarrow x=3\)