Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
(x-5)^2018>=0
y+1)^2018>=0
=>(x-5)^2018+(y+1)^2018>=0
dấu = xảy ra <=>x=5;y=-1
rối quá :)
B = (-5)0 + 51 + (-5)2 + 53 + ... + (-5)2016 + 52017
B = 1 + 51 + 52 + 53 + ... + 52016 + 52017
5B = 5 + 52 + 53 + ... + 52016 + 52017
5B - B = (5 + 52 + 53 + ... + 52016 + 52017) - (1 + 51 + 52 + 53 + ... + 52016 + 52017)
4B = 52017 - 1
B = \(\dfrac{5^{2017}-1}{4}\)
\(A=1+2+2^2+...+2^{2017}\)
\(\Rightarrow A=\dfrac{2^{2017+1}-1}{2-1}\)
\(\Rightarrow A=2^{2018}-1\)
mà \(B=2^{2018}\)
\(\Rightarrow A-B=2^{2018}-1-2^{2018}\)
\(\Rightarrow A-B=-1\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow A=2A-A=2^{2018}-1\)
\(\Rightarrow A-B=2^{2018}-1-2^{2018}=-1\)
B=1+1/5+1/52+...+1/52018
=>5B=5+1+1/5+...+1/52017
=>5B-B=5-1/52018
=>4B=5-1/52018
=>B=(5-1/52018)/4
\(B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2018}}\)
\(\Rightarrow5B=5\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2018}}\right)\)
\(\Rightarrow5B=5+1+\frac{1}{5}+...+\frac{1}{5^{2017}}\)
\(\Rightarrow5B-B=\left(5+1+\frac{1}{5}+...+\frac{1}{5^{2017}}\right)-\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2018}}\right)\)
\(\Rightarrow4B=5-\frac{1}{5^{2018}}\)
\(\Rightarrow B=\frac{5-\frac{1}{5^{2018}}}{4}\)
Vậy \(B=\frac{5-\frac{1}{5^{2018}}}{4}\)