Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH 1: \(x;y\le0\)
=> \(\left|x\right|+\left|y\right|=-x+\left(-y\right)\)và \(x+y\le0\)
=> \(\left|x+y\right|=-\left(x+y\right)=-x+\left(-y\right)\)
=> \(\left|x\right|+\left|y\right|=\left|x+y\right|\)\(\left(1\right)\)
TH 2: \(x\le0;y\ge0;x+y\le0\)
=> \(\left|x\right|+\left|y\right|=-x+y\)và \(\left|x+y\right|=-\left(x+y\right)=-x+\left(-y\right)\)
Mà \(y\ge0\)
=> \(y\ge-y\)
=> \(-x+y\ge-x+\left(-y\right)\)
=> \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)\(\left(2\right)\)
TH 3: \(x\le0;y\ge0;x+y\ge0\)
=> \(\left|x\right|+\left|y\right|=-x+y\)và \(\left|x+y\right|=x+y\)
Mà \(x\le0\)
=> \(-x\ge x\)
=> \(-x+y\ge x+y\)
=> \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)\(\left(3\right)\)
TH 4: \(x\ge0;y\le0;x+y\le0\)
=> \(\left|x\right|+\left|y\right|=x+\left(-y\right)\)và \(\left|x+y\right|=-\left(x+y\right)=-x+\left(-y\right)\)
Mà \(x\ge0\)
=> \(x\ge-x\)
=> \(x+\left(-y\right)\ge-x+\left(-y\right)\)
=> \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)\(\left(4\right)\)
TH 5: \(x;y\ge0\)
=> \(\left|x\right|+\left|y\right|=x+y\)và \(\left|x+y\right|=x+y\)
=> \(\left|x\right|+\left|y\right|=\left|x+y\right|\)\(\left(5\right)\)
Từ (1), (2), (3), (4), và (5) => \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)
Do \(x-y-z=0\)
\(\Rightarrow x-z=y;y-x=-z;y+z=x\)
Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)
Vậy A=-1
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz+y+1}{yz+y+1}\)
\(=1\)
https://dethi.violet.vn/present/showprint/entry_id/11072330
bạn vào link trên sẽ có full đề và đáp án
p/s: nhớ k cho mình nha <3
\(\frac{x-2}{4}=-\frac{16}{2-x}\)
\(\Leftrightarrow\frac{x-2}{4}=\frac{16}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=4.16=64\)
\(\Leftrightarrow\left(x-2\right)^2=8^2\)
\(\Leftrightarrow\left(x-2-8\right)\left(x-2+8\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)
ta có: x-y-z=0
=> x=y+z
y=x-z
-z=y-x
thay vào biểu thức B ta có: \(B=\left(1-\frac{z}{x}\right)\)\(\left(1-\frac{x}{y}\right)\)\(\left(1+\frac{y}{z}\right)\)
= \(\left(\frac{x-z}{x}\right)\)\(\left(\frac{y-x}{y}\right)\)\(\left(\frac{z+y}{z}\right)\)=\(\frac{y}{x}\).\(\frac{-z}{y}\).\(\frac{x}{z}\)=-1
vậy B=-1
Ta có: (x - 2,5)2014 + |x + y + 0,5| = 0
Mà: (x - 2,5)2014 lớn hơn hoặc bằng 0 và |x + y + 0,5| cũng lớn hơn hoặc bằng 0
Nên để thỏa mãn đẳng thức đã cho thì: (x - 2,5)2014 = 0 và |x + y + 0,5| = 0 => x - 2,5 = 0 và x + y + 0,5 = 0
Với x - 2,5 = 0 => x = 2,5
Thay x = 2,5 vào x + y + 0,5 = 0 => y = -3