Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
\(A=\frac{2}{6-x}\). Để A có GTLN => 6 - x có GTNN và 6 - x > 0
Mà \(6-x\ne0\Rightarrow6-x=1\Rightarrow x=5\)
\(\Rightarrow A=\frac{2}{1}=2\) khi x = 5
b, \(B=\frac{8-x}{x-3}=\frac{-\left(x-3\right)+5}{x-3}=-1+\frac{5}{x-3}\)
Để B có GTNN \(\Rightarrow\frac{5}{x-3}\) có GTNN => x-3 có GTNN và x - 3 < 0
Mà \(x-3\ne0\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=-1+\frac{5}{-1}=-6\) khi x = 2
đề bai chính là cm P>=0
ta có P=(X^2+2XY+Y^2) + (X^2- 2X+1)
=(X+Y)^2 + (X-1)^2
Tổng các pình phương lun >=0
1. ta có
\(3^{x+2}+4.3^{x+1}+3^{x-1}\)=66
\(3^x.3+3^x.3.4+3^x:3\)=66
3x.3+3x.12+3x.1/3=66
3x.(3+12+1/3)=66
3x.64/3=66
3x=66:64/3
3x=2187
3x=37
=> x=7
2.\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{9}=\frac{y}{12}\) (cung nhân cả hai phân số với 1/3)
\(\frac{y}{6}=\frac{z}{8}=>\frac{y}{12}=\frac{z}{16}\) (cùng nhân cả hai phân số với 1/2)
từ đây suy ra
\(x^2+x+3=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\) luôn dương với mọi x
------------------
\(-2x^2+3x-8=2\left(-x^2+\frac{3}{2}x-4\right)=2\left[-x^2+2.\frac{3}{4}.x-\frac{9}{16}-\frac{55}{16}\right]=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\)
\(=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\le-\frac{55}{15}< 0\) luôn âm với mọi x
Ta có: (x - 2,5)2014 + |x + y + 0,5| = 0
Mà: (x - 2,5)2014 lớn hơn hoặc bằng 0 và |x + y + 0,5| cũng lớn hơn hoặc bằng 0
Nên để thỏa mãn đẳng thức đã cho thì: (x - 2,5)2014 = 0 và |x + y + 0,5| = 0 => x - 2,5 = 0 và x + y + 0,5 = 0
Với x - 2,5 = 0 => x = 2,5
Thay x = 2,5 vào x + y + 0,5 = 0 => y = -3
cái đầu là 0 và cái sau là 3,7