Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị nhỏ nhất của đa thức g(x)=16x4-72x2+90
Ta có:
g(x)=16x4−72x2+90
=(4x2)2−2.4x2.9+92+9
=(4x2−9)2+9
Với mọi giá trị của x ta có: (4x2−9)2≥0
⇒g(x)=(4x2−9)2+9≥9
Dấu "=" xảy ra khi ⇔(4x2-9)2=0⇔x=± \(\frac{3}{2}\)
Vậy GTNN của đa thức \(g\left(x\right)\)là 9 tại x=\(\pm\frac{3}{2}\)
Áp dungk KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta có : \(\left|x-2\right|\ge0\)\(\forall\)\(x\); \(4\ge0\)
nên : \(4\left|x-2\right|\ge0\)\(\forall\)\(x\)
\(\Rightarrow\)\(10-4\left|x-2\right|\ge10-0\)\(\forall\)\(x\)
\(\Rightarrow\)\(10-4\left|x-2\right|\ge10\)\(\forall\)\(x\)
Để \(10-4\left|x-2\right|\)đạt GTLN thì \(\Leftrightarrow\)\(4\left|x-2\right|\)đạt giá trị nhỏ nhất
\(\Leftrightarrow\)\(4\left|x-2\right|=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTLN của B đạt được \(=10\)khi \(x=2\)
a, Ta có :
\(A=\frac{2}{6-x}\). Để A có GTLN => 6 - x có GTNN và 6 - x > 0
Mà \(6-x\ne0\Rightarrow6-x=1\Rightarrow x=5\)
\(\Rightarrow A=\frac{2}{1}=2\) khi x = 5
b, \(B=\frac{8-x}{x-3}=\frac{-\left(x-3\right)+5}{x-3}=-1+\frac{5}{x-3}\)
Để B có GTNN \(\Rightarrow\frac{5}{x-3}\) có GTNN => x-3 có GTNN và x - 3 < 0
Mà \(x-3\ne0\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=-1+\frac{5}{-1}=-6\) khi x = 2
do 16x4 \(\ge\)0
72x2 \(\ge\)0
=> 16x^4 - 72x^2 \(\ge\)0
=> 16x^4 - 72x^2 + 90 \(\ge\)0
hay G(x) \(\ge\)90
GTNN của G(x) = 90
dấu = xảy ra <=> x = 0
đề bai chính là cm P>=0
ta có P=(X^2+2XY+Y^2) + (X^2- 2X+1)
=(X+Y)^2 + (X-1)^2
Tổng các pình phương lun >=0