Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x-1)^2008\(\ge\)0
(y-2/5)^2008\(\ge\)0
|x+y+z|\(\ge\)0
\(\Rightarrow\)(2x-1)^2008+(y-2/5)^2008+|x+y+z|\(\ge\)0
mà (2x-1)^2008+(y-2/5)^2008+|x+y+z|=0
\(\Rightarrow\)(2x-1)^2008=0;(y-2/5)^2008=0;|x+y+z|=0
x=1/2;y=2/5;z=-9/10
Ta thấy : \(\left(2x-1\right)^{2008}\ge0\)
\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)
\(\left|x+y+z\right|\ge0\)
Để \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y=z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=-x-y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{-1}{2}-\frac{2}{5}\end{cases}}\)
(2x - 1 )2008+(y - 2/5)2008 + |x + y - z | = 0
=> ( 2x - 1) 2008 =0 => 2x - 1 =0 => 2x = 1 => x = 1/2
( y - 2/5 )2008 = 0 y - 2/5 = 0 y =2/5 y = 2/5
|x + y -z | = 0 x + y - z = 0 x + 2/5 - z = 0 1/2 - 2/5 -z = 0
=>x = 1/2 =>x = 1/2
y = 2/5 y = 2/5
5/10 - 4/10 = z z = 1/ 10
Vậy x = 1/2 ; y = 2/5 : z = 1/10
( nhớ cho mk nha )
ta có: \(\left(2x-1\right)^{2008}\ge0\)
\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)
\(\left|x+y-z\right|\ge0\)
\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\)
để \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
\(\Rightarrow\left(2x-1\right)^{2008}=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
\(\left(y-\frac{2}{5}\right)^{2008}=0\Rightarrow y-\frac{2}{5}=0\Rightarrow\frac{2}{5}\)
\(\left|x+y-z\right|=0\Rightarrow x+y-z=0\Rightarrow z=x+y\Rightarrow z=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\)
KL: x= 1/2; y= 2/5; z=9/10
( mk nghĩ nó còn có nhiều đáp số lắm, nhưng mk ko bít cách lm)
\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)
vì \(\left|\frac{3}{2}x+\frac{1}{9}\right|\ge0;\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0=>\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0\) (với mọi x,y)
Mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\) (theo đề)
Nên \(\left|\frac{3}{2}x+\frac{1}{9}\right|=0=>\frac{3}{2}x=-\frac{1}{9}=>x=-\frac{2}{27}\)
\(\left|\frac{1}{5}y-\frac{1}{2}\right|=0=>\frac{1}{5}y=\frac{1}{2}=>y=\frac{5}{2}\)
Vậy...........
(2x-1)2008 \(\ge\) 0 với mọi x
(y-2/5)2008 \(\ge\) 0 với mọi y
|x+y+z| \(\ge\) 0 với mọi x;y;z
=>(2x-1)2008+(y-2/5)2008+|x+y+z| \(\ge\) 0 với mọi x;y;z
Mà (2x-1)2008+(y-2/5)2008+|x+y+z| = 0 (theo đề)
=>(2x-1)2008+(y-2/5)2008=|x+y+z|=0
+)(2x-1)2008=0=>2x-1=0=>2x=1=>x=1/2
+)(y-2/5)2008=0=>y-2/5=0=>y=2/5
+)|x+y+z|=0=>x+y+z=0=>(1/2+2/5)+z=0=>9/10+z=0=>z=-/910
Vậy x=1/2;y=2/5;z=-9/10
bày em cách làm với được không ạ? em tự suy ra chứ thầy cô chưa bày j cả nên là em cx chưa hiểu cho lắm mong anh giúp đỡ ạ
ta có: \(\left(\text{2x − 1}\right)^{2018}\) ≥ 0
\(\left(y-\frac{2}{5}\right)^{2018}\) ≥ 0
\(\left|x+y-z\right|\) ≥ 0
⇒ \(\left(\text{2x − 1 }\right)^{2018}\)+ \(\left(y-\frac{2}{5}\right)^{2018}\) +\(\left|\text{ x + y − z }\right|\) ≥ 0
để \(\left(\text{2x − 1}\right)^{2018}\) + \(\left(y-\frac{2}{5}\right)^{2018}\) + \(\left|\text{x + y − z}\right|\) = 0
⇒ \(\left(\text{2x − 1}\right)^{2018}\) = 0 ⇒ 2x − 1 = 0 ⇒ x = \(\frac{1}{2}\)
\(\left(y-\frac{2}{5}\right)^{2018}\) = 0 ⇒ y − \(\frac{2}{5}\) = 0⇒ \(\frac{2}{5}\)
\(\left|\text{x + y − z}\right|\) = 0 ⇒ x + y − z = 0 ⇒ z = x + y ⇒z = \(\frac{1}{2}\) + \(\frac{2}{5}\) = \(\frac{9}{10}\)
KL: x = \(\frac{1}{2}\); y = \(\frac{2}{5}\); z = \(\frac{9}{10}\)
( mình nghĩ nó còn có nhiều đáp số lắm, nhưng mình ko biết cách làm)
Chúc bạn học có hiệu quả!