Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 x + m y = 1 m x + 2 y = 1 ⇔ y = 1 − m x 2 2 x + m 1 − m x 2 = 1 ⇔ y = 1 − m x 2 4 − m 2 x = 2 − m ⇔ y = 1 − m x 2 2 − m 2 + m x = 2 − m
Nếu m = 2 ⇒ 0x = 0 hệ phương trình có vô số nghiệm
Nếu m = − 2 ⇒ 0x = 4 hệ phương trình vô nghiệm
Nếu m ≠ ± 2 ⇒ ( 2 + m ) x = 1 x = 1 2 + m ⇒ y = 1 2 + m ⇒ M 1 2 + m ; 1 2 + m
Nhận thấy: M có tọa độ thỏa mãn tung độ = hoành độ
M nằm trên đường thẳng (d): x = y
Đáp án:C
Câu a :))
Hàm số đã cho đồng biến .
giải thích :
Do \(m^2\ge0\forall m\)
\(\Rightarrow m^2+1>0\)
Vậy hàm số trên đồng biến.
Giả sử đths đi qua điểm cố định ( x0;y0 )
Ta có y0 = ( m2 +1 )x0 - 1
<=> y0 = m2 x0 +x0 -1
<=> y0 -x0 +1 -m2x0 = 0
Để pt nghiệm đúng với mọi m \(\Leftrightarrow\hept{\begin{cases}y_0-x_0+1=0\\x_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}y_0=-1\\x_0=0\end{cases}}}\)
Vậy đths luôn đi qua điểm cố định ( 0 ; -1 )
Phương trình hoành độ giao điểm:
\(mx_0+m=\dfrac{-1}{m}x_0+\dfrac{1}{m}\) (ĐK: \(m\ne0\))
\(m^2x_0+m^2=-x_0+1\)
\(x_0\left(m^2+1\right)=1-m^2\)
\(x_0=\dfrac{1-m^2}{m^2+1}\) (1)
Mà theo (d1): \(y_0=mx_0+m\)
Suy ra: \(y_0=m.\dfrac{1-m^2}{m^2+1}+m\)
\(y_0=\dfrac{m-m^3+m^3+m}{m^2+1}\)
\(y_0=\dfrac{2m}{m^2+1}\) (2)
Thế (1) và (2) vào T ta được:
\(T=\left(\dfrac{1-m^2}{m^2+1}\right)^2+\left(\dfrac{2m}{m^2+1}\right)^2\)
\(T=\dfrac{m^4-2m^2+1+4m^2}{m^4+2m^2+1}\)
\(T=1\)
\(a\text{) Gọi }M\left(m;m^2\right)\in P\)
\(d\left(M;Ox\right)=d\left(M;Oy\right)\Leftrightarrow\left|x_M\right|=\left|y_M\right|\)\(\Leftrightarrow\left|m\right|=\left|m^2\right|\Leftrightarrow m^2=m\text{ hoặc }m^2=-m\)
\(\Leftrightarrow m^2-m=0\text{ hoặc }m^2+m=0\)
\(\Leftrightarrow m=0\text{ hoặc }m=1\text{ hoặc }m=-1\)
\(\text{Kết luận: }M\left(0;0\right)\text{ hoặc }M\left(1;1\right)\text{ hoặc }M\left(-1;1\right)\)
\(b\text{) }A\in d\Rightarrow a+b=1\text{ (1)}\)
\(\text{Phương trình hoành độ giao điểm của }P\text{ và }d\text{ là: }x^2=ax+b\)
\(\Leftrightarrow x^2-ax-b=0\text{ (*)}\)
\(d\text{ là tiếp tuyến của }P\Leftrightarrow d\text{ giao }P\text{ tại 1 điểm duy nhất }\Leftrightarrow\left(\text{*}\right)\text{ có nghiệm kép }\)
\(\Leftrightarrow\Delta=a^2+4b=0\text{ (2)}\)
\(\left(1\right)\Leftrightarrow b=1-a;\text{ thay vào (2) ta được: }a^2+4\left(1-a\right)=0\)
\(\Leftrightarrow a^2-4a+4=0\Leftrightarrow\left(a-2\right)^2=0\Leftrightarrow a=2\)
\(\Rightarrow b=-1\)
\(\text{Vậy }a=2;\text{ }b=-1\)
a) (d) đi qua điểm \(M\left(-3;1\right)\Rightarrow1=\left(2m-1\right).\left(-3\right)-4m+5\)
\(\Rightarrow1=-6m+3-4m+5\Rightarrow1=-10m+8\Rightarrow10m=7\Rightarrow m=\dfrac{7}{10}\)
\(\Rightarrow y=\dfrac{2}{5}x+\dfrac{11}{5}\)
b) Gọi \(A\left(x_A;y_A\right)\) là điểm cố định mà (d) luôn đi qua
\(\Rightarrow y_A=\left(2m-1\right)x_A-4m+5\)
\(\Rightarrow2mx_A-x_A-4m+5-y_A=0\Rightarrow2m\left(x_A-2\right)-\left(x_A+y_A-5\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_A=2\\x_A+y_A-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_A=2\\y_A=3\end{matrix}\right.\Rightarrow A\left(2;3\right)\)
\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(2;3\right)\) cố định
a) Thay x=-3 và y=1 vào (d), ta được:
\(\left(2m-1\right)\cdot\left(-3\right)-4m+5=1\)
\(\Leftrightarrow-6m+3-4m+5=1\)
\(\Leftrightarrow-10m=-7\)
hay \(m=\dfrac{7}{10}\)
a.
Để d đi qua M \(\Rightarrow\) tọa độ M thỏa mãn pt d
\(\Rightarrow1=-3\left(2m-1\right)-4m+5\)
\(\Rightarrow m=\dfrac{7}{10}\)
b.
Giả sử tọa độ điểm cố định là \(A\left(x_0;y_0\right)\Rightarrow\) với mọi m ta luôn có:
\(y_0=\left(2m-1\right)x_0-4m+5\)
\(\Leftrightarrow2m\left(x_0-2\right)-\left(x_0+y_0-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0-2=0\\x_0+y_0-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=3\end{matrix}\right.\)
Vậy với mọi m thì d luôn đi qua điểm cố định có tọa độ \(\left(2;3\right)\)