K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình hoành độ giao điểm: 
\(mx_0+m=\dfrac{-1}{m}x_0+\dfrac{1}{m}\) (ĐK: \(m\ne0\))

\(m^2x_0+m^2=-x_0+1\)

\(x_0\left(m^2+1\right)=1-m^2\)

\(x_0=\dfrac{1-m^2}{m^2+1}\) (1)

Mà theo (d1): \(y_0=mx_0+m\) 

Suy ra: \(y_0=m.\dfrac{1-m^2}{m^2+1}+m\)
\(y_0=\dfrac{m-m^3+m^3+m}{m^2+1}\)

\(y_0=\dfrac{2m}{m^2+1}\) (2)

Thế (1) và (2) vào T ta được: 
\(T=\left(\dfrac{1-m^2}{m^2+1}\right)^2+\left(\dfrac{2m}{m^2+1}\right)^2\)

\(T=\dfrac{m^4-2m^2+1+4m^2}{m^4+2m^2+1}\)
\(T=1\)

 

15 tháng 11 2017

Ta có d: 4x + 2y = −5 ⇔ y = − 4 x − 5 2 và d’: 2x – y = −1 ⇔ y = 2x + 1

Xét phương trình hoành độ giao điểm của d và d’:

− 4 x − 5 2 = 2 x + 1 ⇔ −4x – 5 = 4x + 2 ⇔ 8x = −7 ⇔ x = − 7 8

⇒ y = 2 x + 1 = 2. − 7 8 + 1 = − 3 4

Vậy tọa độ giao điểm của d và d’ là − 7 8 ; − 3 4

Suy ra nghiệm của hệ phương trình 4 x + 2 y = − 5 2 x − y = − 1 là x 0 ;   y 0 = − 7 8 ; − 3 4

Từ đó x 0. y 0 = − 7 8 . − 3 4 = 21 32

Đáp án: A

17 tháng 5 2018

Ta có d: −2x + y = 3 ⇔ y = 2x + 3 và d’: x + y = 5y = 5 – x

Xét phương trình hoành độ giao điểm của d và d’: 2x + 3 = 5 – x ⇔ x = 2 3

⇒ y = 5 – x = 5 − 2 3 = 13 3

Vậy tọa độ giao điểm của d và d’ là 2 3 ; 13 3

Suy ra nghiệm của hệ phương trình − 2 x + y = 3 x + y = 5 là 2 3 ; 13 3

Từ đó y 0 – x 0 = 13 3 − 2 3 = 11 3

Đáp án: A

14 tháng 7 2017

2 x + m y = 1 m x + 2 y = 1 ⇔ y = 1 − m x 2 2 x + m 1 − m x 2 = 1 ⇔ y = 1 − m x 2 4 − m 2 x = 2 − m ⇔ y = 1 − m x 2 2 − m 2 + m x = 2 − m

Nếu m = 2 ⇒ 0x = 0 hệ phương trình có vô số nghiệm

Nếu m = − 2 ⇒ 0x = 4 hệ phương trình vô nghiệm

Nếu m ≠ ± 2 ⇒ ( 2   +   m ) x   =   1   x = 1 2 + m ⇒ y = 1 2 + m ⇒ M 1 2 + m ; 1 2 + m    

Nhận thấy: M có tọa độ thỏa mãn tung độ = hoành độ

 M nằm trên đường thẳng (d): x = y

Đáp án:C

25 tháng 11 2023

a: loading...

b: Phương trình hoành độ giao điểm là:

4x-2=-x+3

=>4x+x=3+2

=>5x=5

=>x=1

Thay x=1 vào y=-x+3, ta được:

\(y=-1+3=2\)

Vậy: M(1;2)

c: Gọi \(\alpha;\beta\) lần lượt là góc tạo bởi (d1),(d2) với trục Ox

(d1): y=4x-2

=>\(tan\alpha=4\)

=>\(\alpha=76^0\)

(d2): y=-x+3

=>\(tan\beta=-1\)

=>\(\beta=135^0\)

d: Thay y=6 vào (d1), ta được:

4x-2=6

=>4x=8

=>x=2

=>A(2;6)

Thay x=6/2=3 vào (d2), ta được:

\(y=-3+3=0\)

vậy: B(3;0)

Vì (d):y=ax+b đi qua A(2;6) và B(3;0) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=6\\3a+b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a+b-3a-b=6-0\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=6\\b=-3a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=-6\\b=-3\cdot\left(-6\right)=18\end{matrix}\right.\)

Vậy: (d): y=-6x+18

e: A(2;6); B(3;0); M(1;2)

\(AM=\sqrt{\left(1-2\right)^2+\left(2-6\right)^2}=\sqrt{17}\)

\(BM=\sqrt{\left(1-3\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(AB=\sqrt{\left(3-2\right)^2+\left(0-6\right)^2}=\sqrt{37}\)

Chu vi tam giác AMB là:

\(C_{AMB}=\sqrt{17}+2\sqrt{2}+\sqrt{37}\)

Xét ΔAMB có 

\(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{17+8-37}{2\cdot2\sqrt{2}\cdot\sqrt{17}}=\dfrac{-3}{\sqrt{34}}\)

=>\(\widehat{AMB}\simeq121^0\) và \(sinAMB=\sqrt{1-\left(-\dfrac{3}{\sqrt{34}}\right)^2}=\dfrac{5}{\sqrt{34}}\)

Xét ΔAMB có

\(\dfrac{AB}{sinAMB}=\dfrac{AM}{sinABM}=\dfrac{BM}{sinBAM}\)

=>\(\dfrac{\sqrt{17}}{sinABM}=\dfrac{2\sqrt{2}}{sinBAM}=\sqrt{37}:\dfrac{5}{\sqrt{34}}\)

=>\(sinABM\simeq0,58;\widehat{BAM}\simeq0,4\)

=>\(\widehat{ABM}\simeq35^0;\widehat{BAM}\simeq24^0\)

20 tháng 4 2018

Với m = 2 thì d 1 : y = 2x + 3; d 2 : y = x + 1

Tập xác định của hàm số R

Bảng giá trị

x 0 - 1
y = 2x + 3 3 1
x 0 - 1
y = x + 1 1 0

Đề kiểm tra Toán 9 | Đề thi Toán 9

Gọi A ( x 0 ; y 0 ) là tọa độ giao điểm của d1 và d2

Khi đó:

( y 0  = 2 x 0  + 3 và  y 0  =  x 0  + 1

⇒ 2xo + 3 = x 0  + 1 ⇔  x 0  = -2

⇒  y 0  =  x 0  + 1 = -2 + 1 = -1

 

Vậy tọa độ giao điểm của d 1  và d 2 là (-2; -1)

9 tháng 3 2022

Thay m = 2 ta được (d1) : 2x + y = 5

<=> (d) : y = 5 - 2x 

Thay m = 2 ta được 

(d2) : x + 2y = 3 <=> (d2) : y = \(\dfrac{3-x}{2}\)

Hoành độ giao điểm tm pt 

\(5-2x=\dfrac{3-x}{2}\Leftrightarrow10-4x=3-x\Leftrightarrow-3x=-7\Leftrightarrow x=\dfrac{7}{3}\)

=> y = 1/3 

Vậy với m = 2 (d1) cắt (d2) tại A(7/3;1/3)