Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x - 1 )2018 + ( y + 3 )2020 + ( z - 5 )2022 = 0
Ta thấy : ( x - 1 )2018 \(\ge0\) ; ( y + 3 )2020 \(\ge0\) ; ( z - 5 )2022 \(\ge0\)
\(\Rightarrow\left(x-1\right)^{2018}+\left(y+3\right)^{2020}+\left(z-5\right)^{2022}\ge0\)
Theo đề,ta có : \(\left(x-1\right)^{2018}=\left(y+3\right)^{2020}=\left(z-5\right)^{2022}=0\)
+) \(\left(x-1\right)^{2018}=0\Rightarrow x-1=0\Rightarrow x=1\)
+) \(\left(y+3\right)^{2020}=0\Rightarrow y+3=0\Rightarrow y=-3\)
=) \(\left(z-5\right)^{2022}=0\Rightarrow z-5=0\Rightarrow z=5\)
Vậy : x = 1 ; y = -3 ; z = 5
\(\text{Ta có:}\)
\(\hept{\begin{cases}\left(x-1\right)^{2018}\ge0\\\left(y+3\right)^{2020}\ge0\\\left(z-5\right)^{2022}\ge0\end{cases}}\text{mà:}\left(x-1\right)^{2018}+\left(y-2\right)^{2020}+\left(z-3\right)^{2022}=0\text{ nên:}\)
\(\hept{\begin{cases}\left(x-1\right)^{2018}=0\\\left(y+3\right)^{2018}=0\\\left(z-5\right)^{2018}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-3\\z=5\end{cases}}\)
bạn tự kết luận
`a, A = 3020 xx 3110 - 5 = 3020 xx 3109 + 3020 - 5`
`= 3020 xx 3109 + 3015 = B`.
`b, B = (2022-2)(2022+2) = 2022^2-4 < 2022^2 = A.`
Ta có \(\left(x+1\right)^{2022}\ge0\forall x\Rightarrow A=2020-\left(x+1\right)^{2022}\le2020\forall x\)
Dấu "=" xảy ra <=> x + 1 = 0
=> x = -1
Vậy GTLN của A là 2020 khi x = -1
b) Để C đạt GTLN
=> \(\frac{5}{\left(x+3\right)^2}\)lớn nhất
=> (x - 3)2 nhỏ nhất
=> (x - 3)2 = 1
=> \(\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
Nếu x = 4 => C = 6
Vậy GTLN của C là 6 khi x = 4 hoặc x = 2
A = 2020 - ( x + 1 )2022
-( x + 1 )2022 ≤ 0 ∀ x => 2020 - ( x + 1 )2 ≤ 2020
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MaxA = 2020 <=> x = -1
C = \(\frac{5}{\left(x-3\right)^2+1\left(^∗\right)}\)
Để C đạt GTLN => (*) = ( x - 3 )2 + 1 đạt GTNN
( x - 3 )2 ≥ 0 ∀ x => ( x - 3 )2 + 1 ≥ 1
=> Min(*) = 1 <=> x - 3 = 0 => x = 3
=> MaxC = 5 <=> x = 3
\(\dfrac{x-4}{2022}+\dfrac{x-3}{2021}+\dfrac{x-2}{2020}+\dfrac{x-1}{2019}\text{=}-4\)
\(\dfrac{x-4}{2022}+\dfrac{x-3}{2021}+\dfrac{x-2}{2020}+\dfrac{x-1}{2019}+4\text{=}0\)
\(\left(\dfrac{x-4}{2022}+1\right)+\left(\dfrac{x-3}{2021}+1\right)+\left(\dfrac{x-2}{2020}+1\right)+\left(\dfrac{x-1}{2019}+1\right)\text{=}0\)
\(\dfrac{x-2018}{2022}+\dfrac{x-2018}{2021}+\dfrac{x-2018}{2020}+\dfrac{x-2018}{2019}\text{=}0\)
\(\left(x-2018\right)\left(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}\right)\text{=}0\)
\(Do:\) \(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}\ne0\)
\(x-2018\text{=}0\)
\(x\text{=}2018\)
\(Vậy...\)
\(\left(5-x\right)^{2020}=\left(5-x\right)^{2022}\\ \left(5-x\right)^{2020}-\left(5-x\right)^{2022}=0\\ \left(5-x\right)^{2020}-\left(5-x\right)^{2020}\cdot\left(5-x\right)^2=0\\ \left(5-x\right)^{2020}\cdot\left(1-\left(5-x\right)^2\right)=0\)
\(\Rightarrow Th1:\left(5-x\right)^{2020}=0\\ 5-x=0\\ x=5-0\\ x=5\) \(\Rightarrow Th2:1-\left(5-x\right)^2=0\\ \left(5-x\right)^2=1-0\\\left(5-x\right)^2=1\\ 5-x=1\\ x=5-1\\ x=4 \)
Vậy \(x\in\left\{5;4\right\}\)
=2020 . (2018+2) - ( 2020+2) . 2018
=[(2020.2018)+2] -[( 2020 . 2018)+2]
= [ ( 2020.2018)] - [( 2020.2018)] + 2+2
= 0+4
=4
chắc thế ok bn
2020x2020x2020x2018
=2018x(2020x3)
=2018x6060
=(bạn tính=máy tính đi nhé)