Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(A< \frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\)
\(A< \frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(A< \frac{1}{100}-\frac{1}{105}\)
\(A< \frac{1}{2100}=\frac{1}{2^2.3.5^2.7}\)
\(\Rightarrow A< B\)
P/s : Hình như viết sai đề ở chỗ 32 thì phải ??? Bài tui làm là đã sửa lại đề rùi nhé !
Tìm x:
\(\dfrac{4-x}{6-x}\)=\(\dfrac{x-3}{x-8}\)\(\Rightarrow\)(4-x)(x-8)=(6-x)(x-3)
\(\Rightarrow\)12x-x2-32=9x-x2-18
\(\Rightarrow\)3x=14\(\Rightarrow\)x=\(\dfrac{14}{3}\).
\(\dfrac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{48}}\)
=\(\dfrac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{48}}\)
=\(\dfrac{7^{48}.5^{30}.2^8.\left(1-7.2^2\right)}{5^{29}.2^8.7^{48}}\)
=5.(1-7.22) = 5.(1-28) = 5.(-27) = -135
\(\frac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{48}}\)
\(=\frac{\left(7^2\right)^{24}.\left(5^3\right)^{10}.2^8-5^{30}.7^{49}.\left(2^2\right)^5}{5^{29}.\left(2^4\right)^2.7^{48}}\)
\(=\frac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{48}}\)
\(=\frac{7^{48}.5^{30}.2^8.\left(1-7.2^2\right)}{5^{29}.2^8.7^{48}}\)
\(=5.\left(1-7.4\right)\)
\(=5.\left(1-28\right)\)
\(=5.\left(-27\right)=-135\)
Câu 1;
\(\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}\cdot\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{2\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{13}\right)}\cdot\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{4\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}\cdot\frac{3}{4}+\frac{5}{8}=\frac{3}{8}+\frac{5}{8}=1\)
Câu 2:
\(\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{11}{7}+\frac{11}{3}}=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{3}}=\frac{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{11\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}=\frac{3}{11}\)
Câu 1;
13 −17 −113 23 −27 −213 ·34 −316 −364 −3256 1−14 −116 −164 +58
=13 −17 −113 2(13 −17 −113 ) ·3(14 −116 −164 −1256 )4(14 −116 −164 −1256 ) +58
=12 ·34 +58 =38 +58 =1
Câu 2:
a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}+\dfrac{5}{48}=\dfrac{6}{48}=\dfrac{1}{8}\)
\(\Leftrightarrow-\dfrac{1}{12}< x< \dfrac{1}{8}\)
=>x=0
c: \(\Leftrightarrow x=\dfrac{-1}{2}\cdot\dfrac{1}{4}=\dfrac{-1}{8}\)
d: \(\Leftrightarrow x^8=x^7\)
=>x(x-1)=0
=>x=0(loại) hoặc x=1(nhận)
e: \(\Leftrightarrow3^x=\dfrac{3^{10}}{3^9}=3\)
hay x=1
f: =>x-1=20
hay x=21
\(H=\frac{8}{1^2\cdot3^2}+\frac{16}{3^2\cdot5^2}+...+\frac{48}{11^2\cdot13^2}\)
\(H=\frac{1}{1^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{5^2}+...+\frac{1}{11^2}-\frac{1}{13^2}\)
\(H=1-\frac{1}{13^2}\)
\(H=\frac{168}{169}\)
Phương thiếu bước nhé
\(H=\frac{8}{1^2.3^2}+\frac{16}{3^2.5^2}+\frac{24}{5^2.7^2}+...+\frac{48}{11^2.13^2}\)
\(H=\frac{3^2-1^2}{1^2.3^2}+\frac{5^2-3^2}{3^2.5^2}+\frac{7^2-5^2}{5^2.7^2}+...+\frac{13^2-11^2}{11^2.13^2}\)
\(H=\frac{3^2}{1^2.3^2}-\frac{1^2}{1^2.3^2}+\frac{5^2}{3^2.5^2}-\frac{3^2}{3^2.5^2}+\frac{7^2}{5^2.7^2}-\frac{5^2}{5^2.7^2}+...+\frac{13^2}{11^2.13^2}-\frac{11^2}{11^2.13^2}\)
\(H=\frac{1}{1^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{5^2}+\frac{1}{5^2}-\frac{1}{7^2}+...+\frac{1}{11^2}-\frac{1}{13^2}\)
\(H=1-\frac{1}{13^2}=1-\frac{1}{169}=\frac{168}{169}\)
Chúc bạn học tốt ~