K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

(x3 - 4y)(x2 - 2xy + 4y)(x2 + 2xy + 4y) tại x = -2; y = 1/2

Thay x = -2; y = 1/2 vào biểu thức, ta có:

[(-2)3 - 4.(1/2)].[(-2)2 - 2.(-2).(1/2) + 4.(1/2)].[(-2)2 + 2.(-2).(1/2) + 4.(1/2)]

= -10.8.4

= -320

Vậy:..

29 tháng 4 2019

A   =   x 2   +   2 x y   +   y 2   –   4 x   –   4 y   +   1     =   ( x 2   +   2 x y   +   y 2 )   –   ( 4 x   +   4 y )   +   1     =   ( x   +   y ) 2   –   4 ( x   +   y )   +   1

 

Tại x + y = 3, ta có: A = 3 2 – 4.3 + 1 = -2

Đáp án cần chọn là: D

17 tháng 7 2021

undefined

Ta có: \(A=\left(x^2+2xy+y^2\right)-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4\cdot3+1\)

\(=-2\)

25 tháng 10 2023

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Lời giải:

Gọi biểu thức trên là $A$. Ta có:

$A=(x-2y)(x^2+2xy+4y^2)(x+2y)(x^2-2xy+4y^2)$

$=[x^3-(2y)^3][x^2+(2y)^3]$

$=(x^3-8y^3)(x^3+8y^3)$

$=x^6-64y^6=2^6-64.(-1)^6=64-64=0$

29 tháng 10 2023

\(A=x^2-2xy+2y^2-4y+5\\=(x^2-2xy+y^2)+(y^2-4y+4)+1\\=(x-y)^2+(y-2)^2+1\)

Ta thấy: \(\left(x-y\right)^2\ge0\forall x;y\)

              \(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-y\right)^2+\left(y-2\right)^2\ge0\forall x;y\)

\(\Rightarrow A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\forall x;y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x-y=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=2\end{matrix}\right.\)

\(\Leftrightarrow x=y=2\)

Vậy \(Min_A=1\) khi \(x=y=2\).

$Toru$

25 tháng 9 2023

\(B=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ =\left(x+2y\right)\left(x^2-x.2y+\left(2y\right)^2\right)\\ =x^3+\left(2y\right)^3\\ =\left(-8\right)^3+\left(2.-2\right)^3\\ =\left(-8\right)^3+\left(-4\right)^3\\ =-512+\left(-64\right)\\ =-512-64=-576\)

25 tháng 9 2023

\(B=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)

\(=x\left(x^2-2xy+4y^2\right)+2y\left(x^2-2xy+4y^2\right)\)

\(=x^3-2x^2y+4xy^2+2x^2y-4xy^2+8y^3\)

\(=x^3+8y^3+\left(-2x^2y+2x^2y\right)+\left(4xy^2-4xy^2\right)\)

\(=x^3+8y^3\)

Thay \(x=-8;y=-2\) vào \(B\), ta được:

\(B=\left(-8\right)^3+8\cdot\left(-2\right)^3\)

\(=-512-64\)

\(=-576\)

Vậy \(B=-576\) tại \(x=-8;y=-2.\)

#\(Toru\)