Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tại x=11
\(\Rightarrow f\left(x\right)=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-...+\left(x+1\right)x-1\)
\(f\left(x\right)=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-...+x^2+x-1\)
\(f\left(x\right)=x-1\)
\(f\left(x\right)=10\)
\(x=11\Leftrightarrow12=x+1\)
Mà \(f\left(x\right)=x^{17}-12x^{16}+12x^{15}-12x^{14}+........+12x-1\)
\(\Leftrightarrow f\left(x\right)=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-.......+\left(x+1\right)x-1\)
\(\Leftrightarrow f\left(x\right)=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-.....+x^2+x-1\)
\(\Leftrightarrow f\left(x\right)=x-1\)
Mà \(x=11\)
\(\Leftrightarrow f\left(11\right)=11-1=10\)
Vậy \(f\left(11\right)=10\)
\(A=x^{100}-12x^{99}+12x^{98}-12x^{97}+...-12x^3+12x^2-12x+12\)
Thay x = 11 ta có:
\(A=11^{100}-12.11^{99}+12.11^{98}-...-12.11^3+12.11^2-12.11+12\)
\(=11^{100}-12\left(11^{99}-11^{98}+11^{97}-...+11^3-11^2+11\right)+12\)
Đặt \(B=11^{99}-11^{98}+...+11\)
\(\Rightarrow11B=11^{100}-11^{99}+...+11^2\)
\(\Rightarrow12B=11^{100}+11\)
\(\Rightarrow B=\dfrac{11^{100}+11}{12}\)
Từ đó, \(A=11^{100}-12.\dfrac{11^{100}+11}{12}+12\)
\(=11^{100}-11^{100}-11+12=1\)
Vậy A = 1
Ta có: \(x=11\Rightarrow x+1=12\)
Khi đó, ta được:
\(A=x^{100}-12x^{99}+12x^{98}-12x^{97}+...-12x^3+12x^2-12x+12\)
\(=x^{100}-\left(x+1\right)x^{99}+\left(x+1\right)x^{98}-\left(x+1\right)x^{97}+...-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+12\)
\(=x^{100}-x^{100}-x^{99}+x^{99}+x^{98}-x^{98}-x^{97}+...-x^4-x^3+x^3+x^2-x^2-x+12\)
\(=\left(x^{100}-x^{100}\right)-\left(x^{99}-x^{99}\right)+\left(x^{98}-x^{98}\right)-...-\left(x^3-x^3\right)+\left(x^2-x^2\right)-x+12\)
\(=0-x+12=0-11+12=-11+12=1\)
Vậy tại x=11 thì A=1
Câu 1:
Với \(x=11\Rightarrow12=x+1\) ta có: \(x^{17}-12x^{16}+12x^{15}-....+12x-1\)
\(=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-\left(x+1\right)x^{14}+...+\left(x+1\right)x-1\)
\(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-x^{15}-x^{14}+...-x^3-x^2+x^2+x+1\)
\(=x+1\)
\(=12\)
Câu 2:
Do \(VT>0\Rightarrow VP>0\Rightarrow x>0\Rightarrow\) tất cả các biểu thức dưới dấu trị tuyệt đối đều dương, phương trình trở thành:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Leftrightarrow100x+\frac{1+2+3+...+100}{101}=101x\)
\(\Rightarrow x=\frac{100.101}{2.101}=50\)
Câu 3:
\(A=n^3-n+3\left(n^2-1\right)=n\left(n^2-1\right)+3\left(n^2-1\right)\)
\(A=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
Do n lẻ \(\Rightarrow n=2k+1\)
\(\Rightarrow A=\left(2k+4\right).2k.\left(2k+2\right)=8k.\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 6
\(\Rightarrow A⋮\left(8.6\right)\Rightarrow A⋮48\)
\(a,-x^3+3x^2-3x+1=-\left(x^3-3x^2+3x-1\right)=-\left(x^3-3.x^2.1+3.x.1^2-1^3\right)\)
\(=-\left(x-1\right)^3\)
\(b,8-12x+6x^2-x^3=2^3-3.2^2.x+3.2.x^2-x^3=\left(2-x\right)^3\)
\(a,x^3+12x^2+48x+64=x^3+3.x^2.4+3.x.4^2+4^3=\left(x+4\right)^3=\left(6+4\right)^3=10^3=1000\)
\(b,x^3-6x^2+12x-8=x^3-3.x^2.2+3.x.2^2-2^3=\left(x-2\right)^3=\left(22-2\right)^3=20^3=8000\)
Ta có :
\(3-2\left(8x-3\right)-9x^2-12x+4x^2\)
\(=3-16x+6-9x^2-12x+4x^2=-5x^2+9-28x\)
Thay x = -2 vào biểu thức trên ta được :
\(-5\left(-2\right)^2+9-28\left(-2\right)=-20+9+56=-11+56=45\)
Để \(M=5xy^3+4x^2y^2-12x^3y\\ \) và \(A=x\left(x^3+12x^2y-5y^3\right)\) ko âm
\(\Rightarrow\)\(M+A\)cũng đồng thời >0
\(\Rightarrow\)\(M+A=\left(5xy^3+4x^2y^2-12x^3y\right)+\left(x^4+12x^3y-5y^3x\right)\)
\(\Rightarrow\)\(M+A=\left(5xy^3-5xy^3\right)-\left(12x^3y-12x^{3y}\right)+\left(x^4+4x^2y^2\right)\)
\(\Rightarrow M+A=x^4+4x^2y^2\)
Mà \(x^4\ge0\) \(;4x^2y^2\ge0\)
\(\Rightarrow\)\(x^4+4x^2y^2\ge0\)
\(\Rightarrow\)\(M+A\ge0\)
cho 2012=x+1
B=x2012 - (x+1)x^2010+(x+1)x^2009-...+(x+1)x+1
B=x^2012-x^2012-x^2011+x^2011+x^2010-...+x^2+x+1
B=x+1=2012